TotBPPImageTeselaMapVideo/0PreProc/CorregirNCPythonpuro.py

118 lines
5.7 KiB
Python

import xarray as xr
import glob
import numpy as np
def ModAttrs(DictOri,site,label,data):
keys=list(DictOri.keys())
NewDict={}
for key in range(len(keys)):
if site==key:
NewDict[label]=data
NewDict[keys[key]]=DictOri[keys[key]]
return NewDict
def date2float(df,var):
V1=df[var].astype("float64")
return V1
def cleanAttr(var,T):
A=T.attrs
if var in A.keys():
A.pop(var)
return A
def Corrector2(file,DataEntry,DataSal):
T=xr.open_dataset(DataEntry+file)
T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
data =T.DHW_q99[0,:,:].values
T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
T["nCellsValid"]=np.count_nonzero(~np.isnan(data))
T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
T.to_netcdf(path=DataSal+file)
def FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"):
nc1 = xr.open_dataset(Map1+file,decode_times=False,decode_timedelta=False)
nc2b = xr.open_dataset(Map2+file,decode_times=False,decode_timedelta=False)
#nc2b=nc2b.drop_sel({"time":1986})
#nc2b=nc2b.drop_sel({"time":1985})
nc1["DoY_DHW4cal"]=nc2b["DoY_DHW4"]
nc1["DoY_DHW8cal"]=nc2b["DoY_DHW8"]
nc1["nDays_DHW4cal"]=nc2b["nDays_DHW4"]
nc1["nDays_DHW8cal"]=nc2b["nDays_DHW8"]
df=nc1
try:
df=df.drop("quantile")
except:
print("noq")
df.attrs.keys()
#df.attrs=ModAttrs(df.attrs,5,"label","data")
df.attrs["time_coverage_start"]=1987
data=df.DHW_q99[0,:,:].values
df.attrs=ModAttrs(df.attrs,5,"region_name","Global")
#df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
#df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
HH=SalidaDir+file
df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY",
'units': 'day of the year',
'comment': "considering the coldest climatological DoY as the first day of the year"}
df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY",
'units': 'day of the year',
'comment': "considering the coldest climatological DoY as the first day of the year"}
df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week",
"units" : "days"}
df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week",
"units" : "days"}
df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64")
if np.nanmax(df["nDays_DHW4"].values)>1000:
df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24
df["nDays_DHW8"]=df["nDays_DHW8"].astype("float64")
if np.nanmax(df["nDays_DHW8"].values)>1000:
df["nDays_DHW8"]=df["nDays_DHW8"]/1e9/60/60/24
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].astype("float64")
if np.nanmax(df["nDays_DHW4cal"].values)>1000:
df["nDays_DHW4cal"]=df["nDays_DHW4cal"]/1e9/60/60/24
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].astype("float64")
if np.nanmax(df["nDays_DHW8cal"].values)>1000:
df["nDays_DHW8cal"]=df["nDays_DHW8cal"]/1e9/60/60/24
df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'}
df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'}
df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'}
df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'}
mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0))
df["mask_land"]=mask_land
df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1)
df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1)
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1)
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1)
df=df.drop("mask_land")
Tempp=list(df.var().keys())
for i in Tempp:
df[i].attrs=cleanAttr("coordinates",df[i])
df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
comp = dict(zlib=True, complevel=5)
encoding = {var: comp for var in df.data_vars}
df.to_netcdf(path=HH, encoding=encoding)
for i in glob.glob("/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/*"):
A=i.split("/")[-1]
#try:
#SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/"
#file=A
print(A)
#FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir=SalidaDir,file=file)
#print(1)
#Corrector2(file,SalidaDir,"/home/mario/Documentos/Ocean/NetcdfToPng/MapCorregidoV2/")
#print(2)
#break