import xarray as xr import glob import numpy as np def ModAttrs(DictOri,site,label,data): keys=list(DictOri.keys()) NewDict={} for key in range(len(keys)): if site==key: NewDict[label]=data NewDict[keys[key]]=DictOri[keys[key]] return NewDict def date2float(df,var): V1=df[var].astype("float64") return V1 def cleanAttr(var,T): A=T.attrs if var in A.keys(): A.pop(var) return A def Corrector2(file,DataEntry,DataSal): T=xr.open_dataset(DataEntry+file) T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks', 'units': 'day of the year', 'comment': 'considering January 1st the first day of the year'} T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks', 'units': 'day of the year', 'comment': 'considering January 1st the first day of the year'} data =T.DHW_q99[0,:,:].values T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data)) T["nCellsValid"]=np.count_nonzero(~np.isnan(data)) T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"} T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"} T.to_netcdf(path=DataSal+file) def FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"): nc1 = xr.open_dataset(Map1+file,decode_times=False,decode_timedelta=False) nc2b = xr.open_dataset(Map2+file,decode_times=False,decode_timedelta=False) #nc2b=nc2b.drop_sel({"time":1986}) #nc2b=nc2b.drop_sel({"time":1985}) nc1["DoY_DHW4cal"]=nc2b["DoY_DHW4"] nc1["DoY_DHW8cal"]=nc2b["DoY_DHW8"] nc1["nDays_DHW4cal"]=nc2b["nDays_DHW4"] nc1["nDays_DHW8cal"]=nc2b["nDays_DHW8"] df=nc1 try: df=df.drop("quantile") except: print("noq") df.attrs.keys() #df.attrs=ModAttrs(df.attrs,5,"label","data") df.attrs["time_coverage_start"]=1987 data=df.DHW_q99[0,:,:].values df.attrs=ModAttrs(df.attrs,5,"region_name","Global") #df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data)) #df["nCellsValid"]=np.count_nonzero(~np.isnan(data)) HH=SalidaDir+file df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY", 'units': 'day of the year', 'comment': "considering the coldest climatological DoY as the first day of the year"} df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY", 'units': 'day of the year', 'comment': "considering the coldest climatological DoY as the first day of the year"} df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week", "units" : "days"} df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week", "units" : "days"} df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64") if np.nanmax(df["nDays_DHW4"].values)>1000: df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24 df["nDays_DHW8"]=df["nDays_DHW8"].astype("float64") if np.nanmax(df["nDays_DHW8"].values)>1000: df["nDays_DHW8"]=df["nDays_DHW8"]/1e9/60/60/24 df["nDays_DHW4cal"]=df["nDays_DHW4cal"].astype("float64") if np.nanmax(df["nDays_DHW4cal"].values)>1000: df["nDays_DHW4cal"]=df["nDays_DHW4cal"]/1e9/60/60/24 df["nDays_DHW8cal"]=df["nDays_DHW8cal"].astype("float64") if np.nanmax(df["nDays_DHW8cal"].values)>1000: df["nDays_DHW8cal"]=df["nDays_DHW8cal"]/1e9/60/60/24 df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'} df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'} df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'} df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'} mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0)) df["mask_land"]=mask_land df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1) df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1) df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1) df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1) df=df.drop("mask_land") Tempp=list(df.var().keys()) for i in Tempp: df[i].attrs=cleanAttr("coordinates",df[i]) df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks', 'units': 'day of the year', 'comment': 'considering January 1st the first day of the year'} df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks', 'units': 'day of the year', 'comment': 'considering January 1st the first day of the year'} comp = dict(zlib=True, complevel=5) encoding = {var: comp for var in df.data_vars} df.to_netcdf(path=HH, encoding=encoding) for i in glob.glob("/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/*"): A=i.split("/")[-1] #try: #SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/" #file=A print(A) #FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir=SalidaDir,file=file) #print(1) #Corrector2(file,SalidaDir,"/home/mario/Documentos/Ocean/NetcdfToPng/MapCorregidoV2/") #print(2) #break