Scripts in all changes
|
@ -0,0 +1,11 @@
|
||||||
|
1Teselas/map/*
|
||||||
|
2nc2image/img/*
|
||||||
|
3image2video/ConCoralN/*
|
||||||
|
3image2video/env/*
|
||||||
|
3image2video/img/*
|
||||||
|
3image2video/SinCoralN/*
|
||||||
|
3image2video/Videos/*
|
||||||
|
Data/*
|
||||||
|
DataF/*
|
||||||
|
DataOriginal/*
|
||||||
|
DataVieja/*
|
|
@ -0,0 +1,139 @@
|
||||||
|
import xarray as xr
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def ModAttrs(DictOri,site,label,data):
|
||||||
|
keys=list(DictOri.keys())
|
||||||
|
NewDict={}
|
||||||
|
for key in range(len(keys)):
|
||||||
|
if site==key:
|
||||||
|
NewDict[label]=data
|
||||||
|
NewDict[keys[key]]=DictOri[keys[key]]
|
||||||
|
return NewDict
|
||||||
|
|
||||||
|
def date2float(df,var):
|
||||||
|
V1=df[var].astype("float64")
|
||||||
|
return V1
|
||||||
|
|
||||||
|
def cleanAttr(var,T):
|
||||||
|
A=T.attrs
|
||||||
|
if var in A.keys():
|
||||||
|
A.pop(var)
|
||||||
|
return A
|
||||||
|
|
||||||
|
def Corrector2(file,DataEntry,DataSal):
|
||||||
|
|
||||||
|
T=xr.open_dataset(DataEntry+file)
|
||||||
|
|
||||||
|
T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
data =T.DHW_q99[0,:,:].values
|
||||||
|
T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
|
||||||
|
T["nCellsValid"]=np.count_nonzero(~np.isnan(data))
|
||||||
|
T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
|
||||||
|
T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
|
||||||
|
T.to_netcdf(path=DataSal+file)
|
||||||
|
|
||||||
|
def CorrectNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"):
|
||||||
|
nc1 = xr.open_dataset(Map1+file)#,decode_times=False,decode_timedelta=False
|
||||||
|
#nc1["DoY_DHW4cal"]=nc1["DoY_DHW4"]
|
||||||
|
#nc1["DoY_DHW8cal"]=nc1["DoY_DHW8"]
|
||||||
|
#nc1["nDays_DHW4cal"]=nc1["nDays_DHW4"]
|
||||||
|
#nc1["nDays_DHW8cal"]=nc1["nDays_DHW8"]
|
||||||
|
#nc1=nc1.drop("DoY_DHW4")
|
||||||
|
#nc1=nc1.drop("DoY_DHW8")
|
||||||
|
#nc1=nc1.drop("nDays_DHW4")
|
||||||
|
#nc1=nc1.drop("nDays_DHW8")
|
||||||
|
#nc1["DoY_DHW4"]=nc1["DoYrel_DHW4"]
|
||||||
|
#nc1["DoY_DHW8"]=nc1["DoYrel_DHW8"]
|
||||||
|
#nc1=nc1.drop("DoYrel_DHW4")
|
||||||
|
#nc1=nc1.drop("DoYrel_DHW8")
|
||||||
|
#nc1=nc1.drop_sel({"time":1986})
|
||||||
|
df=nc1
|
||||||
|
try:
|
||||||
|
df=df.drop("quantile")
|
||||||
|
except:
|
||||||
|
print("noq")
|
||||||
|
df.attrs.keys()
|
||||||
|
#df.attrs=ModAttrs(df.attrs,5,"label","data")
|
||||||
|
df.attrs["time_coverage_start"]=1986
|
||||||
|
data=df.DHW_q99[0,:,:].values
|
||||||
|
df.attrs=ModAttrs(df.attrs,5,"region_name","Global")
|
||||||
|
#df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
|
||||||
|
#df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
|
||||||
|
file=file.replace("_start1986","").replace("_dec22","")
|
||||||
|
HH=SalidaDir+file
|
||||||
|
# df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY",
|
||||||
|
# 'units': 'day of the year',
|
||||||
|
# 'comment': "considering the coldest climatological DoY as the first day of the year"}
|
||||||
|
# df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY",
|
||||||
|
# 'units': 'day of the year',
|
||||||
|
# 'comment': "considering the coldest climatological DoY as the first day of the year"}
|
||||||
|
# df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week",
|
||||||
|
# "units" : "days"}
|
||||||
|
# df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week",
|
||||||
|
# "units" : "days"}
|
||||||
|
mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0))
|
||||||
|
df["mask_land"]=mask_land
|
||||||
|
df["nDays_DHW4"]=df["nDays_DHW4"].astype(np.float64)/1e9/60/60/24
|
||||||
|
#if np.nanmax(df["nDays_DHW4"].values)>1000:
|
||||||
|
#df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24
|
||||||
|
#print("NDais")
|
||||||
|
df["nDays_DHW8"]=df["nDays_DHW8"].astype(np.float64)/1e9/60/60/24
|
||||||
|
df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1)
|
||||||
|
df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1)
|
||||||
|
#if np.nanmax(df["nDays_DHW8"].values)>1000:
|
||||||
|
#df["nDays_DHW8"]=df["nDays_DHW8"]
|
||||||
|
#print("NDais")
|
||||||
|
# df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64")
|
||||||
|
# if np.nanmax(df["nDaysrel_DHW4"].values)>1000:
|
||||||
|
# df["nDaysrel_DHW4"]=df["nDaysrel_DHW4"]/1e9/60/60/24
|
||||||
|
# print("NDais")
|
||||||
|
# df["nDaysrel_DHW8"]=df["nDaysrel_DHW8"].astype("float64")
|
||||||
|
# if np.nanmax(df["nDaysrel_DHW8cal"].values)>1000:
|
||||||
|
# df["nDaysrel_DHW8"]=df["nDaysrel_DHW8"]/1e9/60/60/24
|
||||||
|
# print("NDais")
|
||||||
|
#df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'}
|
||||||
|
#df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'}
|
||||||
|
#df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'}
|
||||||
|
#df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'}
|
||||||
|
|
||||||
|
#df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1)
|
||||||
|
#df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1)
|
||||||
|
df=df.drop("mask_land")
|
||||||
|
Tempp=list(df.var().keys())
|
||||||
|
for i in Tempp:
|
||||||
|
df[i].attrs=cleanAttr("coordinates",df[i])
|
||||||
|
# df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
|
||||||
|
# 'units': 'day of the year',
|
||||||
|
# 'comment': 'considering January 1st the first day of the year'}
|
||||||
|
# df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
|
||||||
|
# 'units': 'day of the year',
|
||||||
|
# 'comment': 'considering January 1st the first day of the year'}
|
||||||
|
comp = dict(zlib=True, complevel=5)
|
||||||
|
encoding = {var: comp for var in df.data_vars}
|
||||||
|
data =df.DHW_q99[0,:,:].values
|
||||||
|
df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
|
||||||
|
df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
|
||||||
|
df.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
|
||||||
|
df.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
|
||||||
|
print(df)
|
||||||
|
df.to_netcdf(path=HH, encoding=encoding)
|
||||||
|
nn=0
|
||||||
|
for i in glob.glob("../DataOriginal/*"):
|
||||||
|
A=i.split("/")[-1]
|
||||||
|
SalidaDir="../Data/"
|
||||||
|
nn+=1
|
||||||
|
print(A)
|
||||||
|
CorrectNc(Map1="../DataOriginal/",SalidaDir=SalidaDir,file=A)
|
||||||
|
print(1)
|
||||||
|
#if nn>1:
|
||||||
|
#break
|
||||||
|
#SalidaDir2="../DataF/"
|
||||||
|
#Corrector2(A,SalidaDir,SalidaDir2)
|
||||||
|
#print(2)
|
||||||
|
#break
|
|
@ -0,0 +1,117 @@
|
||||||
|
import xarray as xr
|
||||||
|
import glob
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def ModAttrs(DictOri,site,label,data):
|
||||||
|
keys=list(DictOri.keys())
|
||||||
|
NewDict={}
|
||||||
|
for key in range(len(keys)):
|
||||||
|
if site==key:
|
||||||
|
NewDict[label]=data
|
||||||
|
NewDict[keys[key]]=DictOri[keys[key]]
|
||||||
|
return NewDict
|
||||||
|
|
||||||
|
def date2float(df,var):
|
||||||
|
V1=df[var].astype("float64")
|
||||||
|
return V1
|
||||||
|
|
||||||
|
def cleanAttr(var,T):
|
||||||
|
A=T.attrs
|
||||||
|
if var in A.keys():
|
||||||
|
A.pop(var)
|
||||||
|
return A
|
||||||
|
|
||||||
|
def Corrector2(file,DataEntry,DataSal):
|
||||||
|
T=xr.open_dataset(DataEntry+file)
|
||||||
|
T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
data =T.DHW_q99[0,:,:].values
|
||||||
|
T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
|
||||||
|
T["nCellsValid"]=np.count_nonzero(~np.isnan(data))
|
||||||
|
T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
|
||||||
|
T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
|
||||||
|
T.to_netcdf(path=DataSal+file)
|
||||||
|
|
||||||
|
def FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"):
|
||||||
|
nc1 = xr.open_dataset(Map1+file,decode_times=False,decode_timedelta=False)
|
||||||
|
nc2b = xr.open_dataset(Map2+file,decode_times=False,decode_timedelta=False)
|
||||||
|
#nc2b=nc2b.drop_sel({"time":1986})
|
||||||
|
#nc2b=nc2b.drop_sel({"time":1985})
|
||||||
|
nc1["DoY_DHW4cal"]=nc2b["DoY_DHW4"]
|
||||||
|
nc1["DoY_DHW8cal"]=nc2b["DoY_DHW8"]
|
||||||
|
nc1["nDays_DHW4cal"]=nc2b["nDays_DHW4"]
|
||||||
|
nc1["nDays_DHW8cal"]=nc2b["nDays_DHW8"]
|
||||||
|
df=nc1
|
||||||
|
try:
|
||||||
|
df=df.drop("quantile")
|
||||||
|
except:
|
||||||
|
print("noq")
|
||||||
|
df.attrs.keys()
|
||||||
|
#df.attrs=ModAttrs(df.attrs,5,"label","data")
|
||||||
|
df.attrs["time_coverage_start"]=1987
|
||||||
|
data=df.DHW_q99[0,:,:].values
|
||||||
|
df.attrs=ModAttrs(df.attrs,5,"region_name","Global")
|
||||||
|
#df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
|
||||||
|
#df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
|
||||||
|
HH=SalidaDir+file
|
||||||
|
df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY",
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': "considering the coldest climatological DoY as the first day of the year"}
|
||||||
|
df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY",
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': "considering the coldest climatological DoY as the first day of the year"}
|
||||||
|
df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week",
|
||||||
|
"units" : "days"}
|
||||||
|
df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week",
|
||||||
|
"units" : "days"}
|
||||||
|
df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64")
|
||||||
|
if np.nanmax(df["nDays_DHW4"].values)>1000:
|
||||||
|
df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24
|
||||||
|
df["nDays_DHW8"]=df["nDays_DHW8"].astype("float64")
|
||||||
|
if np.nanmax(df["nDays_DHW8"].values)>1000:
|
||||||
|
df["nDays_DHW8"]=df["nDays_DHW8"]/1e9/60/60/24
|
||||||
|
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].astype("float64")
|
||||||
|
if np.nanmax(df["nDays_DHW4cal"].values)>1000:
|
||||||
|
df["nDays_DHW4cal"]=df["nDays_DHW4cal"]/1e9/60/60/24
|
||||||
|
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].astype("float64")
|
||||||
|
if np.nanmax(df["nDays_DHW8cal"].values)>1000:
|
||||||
|
df["nDays_DHW8cal"]=df["nDays_DHW8cal"]/1e9/60/60/24
|
||||||
|
df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'}
|
||||||
|
df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'}
|
||||||
|
df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'}
|
||||||
|
df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'}
|
||||||
|
mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0))
|
||||||
|
df["mask_land"]=mask_land
|
||||||
|
df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1)
|
||||||
|
df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1)
|
||||||
|
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1)
|
||||||
|
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1)
|
||||||
|
df=df.drop("mask_land")
|
||||||
|
Tempp=list(df.var().keys())
|
||||||
|
for i in Tempp:
|
||||||
|
df[i].attrs=cleanAttr("coordinates",df[i])
|
||||||
|
df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
|
||||||
|
'units': 'day of the year',
|
||||||
|
'comment': 'considering January 1st the first day of the year'}
|
||||||
|
comp = dict(zlib=True, complevel=5)
|
||||||
|
encoding = {var: comp for var in df.data_vars}
|
||||||
|
df.to_netcdf(path=HH, encoding=encoding)
|
||||||
|
|
||||||
|
for i in glob.glob("/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/*"):
|
||||||
|
A=i.split("/")[-1]
|
||||||
|
#try:
|
||||||
|
#SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/"
|
||||||
|
#file=A
|
||||||
|
print(A)
|
||||||
|
#FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir=SalidaDir,file=file)
|
||||||
|
#print(1)
|
||||||
|
#Corrector2(file,SalidaDir,"/home/mario/Documentos/Ocean/NetcdfToPng/MapCorregidoV2/")
|
||||||
|
#print(2)
|
||||||
|
#break
|
|
@ -0,0 +1,6 @@
|
||||||
|
0.01837109614206981
|
||||||
|
0
|
||||||
|
0
|
||||||
|
-0.01837109614206981
|
||||||
|
-180.36742192284140174
|
||||||
|
89.99081445192896922
|
After Width: | Height: | Size: 5.0 MiB |
|
@ -0,0 +1,5 @@
|
||||||
|
docker run -it --mount type=bind,src=/home/mario/Documentos/Ocean/ScuenciaOrganizadaPre/Teselas,dst=/temporal ghcr.io/osgeo/gdal:ubuntu-full-latest bash
|
||||||
|
gdal2tiles.py -p geodetic -z 0-7 -r average -s EPSG:4326 --xyz -w mapml /temporal/P1_96P6.jpeg /temporal/map
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,213 @@
|
||||||
|
import xarray as xr
|
||||||
|
import rioxarray as rio
|
||||||
|
from matplotlib import cm
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.image as imgg
|
||||||
|
import os
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def write_png(data,name, origin='upper', colormapD=None):
|
||||||
|
"""
|
||||||
|
Transform an array of data into a PNG string.
|
||||||
|
This can be written to disk using binary I/O, or encoded using base64
|
||||||
|
for an inline PNG like this:
|
||||||
|
|
||||||
|
>>> png_str = write_png(array)
|
||||||
|
>>> "data:image/png;base64,"+png_str.encode('base64')
|
||||||
|
|
||||||
|
Inspired from
|
||||||
|
https://stackoverflow.com/questions/902761/saving-a-numpy-array-as-an-image
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data: numpy array or equivalent list-like object.
|
||||||
|
Must be NxM (mono), NxMx3 (RGB) or NxMx4 (RGBA)
|
||||||
|
|
||||||
|
origin : ['upper' | 'lower'], optional, default 'upper'
|
||||||
|
Place the [0,0] index of the array in the upper left or lower left
|
||||||
|
corner of the axes.
|
||||||
|
|
||||||
|
colormap : callable, used only for `mono` image.
|
||||||
|
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
|
||||||
|
for transforming a mono image into RGB.
|
||||||
|
It must output iterables of length 3 or 4, with values between
|
||||||
|
0. and 1. Hint: you can use colormaps from `matplotlib.cm`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
PNG formatted byte string
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
if colormapD is None:
|
||||||
|
def colormapD(x):
|
||||||
|
return (x, x, x, 1)
|
||||||
|
|
||||||
|
arr = np.atleast_3d(data)
|
||||||
|
height, width, nblayers = arr.shape
|
||||||
|
|
||||||
|
if nblayers not in [1, 3, 4]:
|
||||||
|
raise ValueError('Data must be NxM (mono), '
|
||||||
|
'NxMx3 (RGB), or NxMx4 (RGBA)')
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
|
||||||
|
|
||||||
|
if nblayers == 1:
|
||||||
|
arr = np.array(list(map(colormapD, arr.ravel())))
|
||||||
|
nblayers = arr.shape[1]
|
||||||
|
if nblayers not in [3, 4]:
|
||||||
|
raise ValueError('colormap must provide colors of r'
|
||||||
|
'length 3 (RGB) or 4 (RGBA)')
|
||||||
|
arr = arr.reshape((height, width, nblayers))
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
|
||||||
|
if nblayers == 3:
|
||||||
|
arr = np.concatenate((arr, np.ones((height, width, 1))), axis=2)
|
||||||
|
nblayers = 4
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
assert nblayers == 4
|
||||||
|
|
||||||
|
# Normalize to uint8 if it isn't already.
|
||||||
|
if arr.dtype != 'uint8':
|
||||||
|
with np.errstate(divide='ignore', invalid='ignore'):
|
||||||
|
arr = arr * 255./np.array([1., 1., 1., 1.]).reshape((1, 1, 4))
|
||||||
|
arr[~np.isfinite(arr)] = 0
|
||||||
|
arr = arr.astype('uint8')
|
||||||
|
|
||||||
|
# Eventually flip the image.
|
||||||
|
if origin == 'lower':
|
||||||
|
arr = arr[::-1, :, :]
|
||||||
|
r3 = arr.copy(order='C')
|
||||||
|
matplotlib.image.imsave(name, r3)
|
||||||
|
|
||||||
|
|
||||||
|
def image_to_url(image,name, colormapD=None, origin='upper'):
|
||||||
|
"""
|
||||||
|
Infers the type of an image argument and transforms it into a URL.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
image: string, file or array-like object
|
||||||
|
* If string, it will be written directly in the output file.
|
||||||
|
* If file, it's content will be converted as embedded in the
|
||||||
|
output file.
|
||||||
|
* If array-like, it will be converted to PNG base64 string and
|
||||||
|
embedded in the output.
|
||||||
|
origin: ['upper' | 'lower'], optional, default 'upper'
|
||||||
|
Place the [0, 0] index of the array in the upper left or
|
||||||
|
lower left corner of the axes.
|
||||||
|
colormap: callable, used only for `mono` image.
|
||||||
|
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
|
||||||
|
for transforming a mono image into RGB.
|
||||||
|
It must output iterables of length 3 or 4, with values between
|
||||||
|
0. and 1. You can use colormaps from `matplotlib.cm`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
if 'ndarray' in image.__class__.__name__:
|
||||||
|
img = write_png(image, origin=origin, colormapD=colormapD,name=name)
|
||||||
|
|
||||||
|
|
||||||
|
def get_color(x,colormap,Min,Max):
|
||||||
|
decimals = 2
|
||||||
|
try:
|
||||||
|
#print(x,Min,Max)
|
||||||
|
x=(x*1.-Min)/(Max*1.-Min)
|
||||||
|
#print(x)
|
||||||
|
if x < 0:
|
||||||
|
x=0.0
|
||||||
|
if x > 1.0:
|
||||||
|
x=1.0
|
||||||
|
x = np.around(x, decimals=decimals)
|
||||||
|
if colormap=="Spectral" or colormap=='ocean' or colormap=="RdYlBu":
|
||||||
|
Tempcm=cm.get_cmap(colormap).reversed()
|
||||||
|
else:
|
||||||
|
Tempcm=cm.get_cmap(colormap)
|
||||||
|
#print(x)
|
||||||
|
ls = np.around(np.linspace(0,1,10**decimals+1),decimals=decimals)
|
||||||
|
#print(ls)
|
||||||
|
if 0 <= x <= 1:
|
||||||
|
#print(cm.get_cmap('viridis')(ls)[np.argwhere(ls==x)][0][0].shape,cm.get_cmap('viridis')(ls)[np.argwhere(ls==x)])
|
||||||
|
#print(x,np.argwhere(ls==x))
|
||||||
|
return Tempcm(ls)[np.argwhere(ls==x)][0][0]
|
||||||
|
else:
|
||||||
|
#print(np.array(np.zeros(4)).shape,np.array(np.zeros(4)))
|
||||||
|
#print(x)
|
||||||
|
return np.zeros(4)
|
||||||
|
except:
|
||||||
|
print(x,np.argwhere(ls==x))
|
||||||
|
return np.zeros(4)
|
||||||
|
|
||||||
|
def ExtractMapImage(file,colormap,countyear,name,nc,geometry=""):
|
||||||
|
|
||||||
|
nc = nc.rio.write_crs(4326)
|
||||||
|
if geometry=="":
|
||||||
|
try:
|
||||||
|
nc = nc.rio.clip(geometries)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
bounds=[[float(nc.lat.min().values),float(nc.lon.min().values)],[float(nc.lat.max().values),float(nc.lon.max().values)]]
|
||||||
|
i=countyear
|
||||||
|
|
||||||
|
year=int(nc.time[i].values)
|
||||||
|
print(i,year)
|
||||||
|
ncVar=nc.DHW_q99
|
||||||
|
data = ncVar[i,:,:].values
|
||||||
|
|
||||||
|
|
||||||
|
Min=np.around(np.nanquantile(ncVar[int(year)-1986,:,:].values, 0.01),2)
|
||||||
|
Max=np.around(np.nanquantile(ncVar[int(year)-1986,:,:].values, 0.99),2)#np.around(np.nanmax(ncVar[year-1985,:,:].values),2)
|
||||||
|
|
||||||
|
image_to_url(data,name, colormapD=lambda x: get_color(x,colormap,Min,Max), origin="lower")
|
||||||
|
|
||||||
|
|
||||||
|
def ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory):
|
||||||
|
cc=0
|
||||||
|
Var="DHW"
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
for CM in Colorpalete:
|
||||||
|
for countyear in range(115):
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
|
||||||
|
if not os.path.isfile(Evaluado):
|
||||||
|
cc=cc+1
|
||||||
|
|
||||||
|
Total=cc
|
||||||
|
start=time.time()
|
||||||
|
cc=0
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
for CM in Colorpalete:
|
||||||
|
for countyear in range(115):
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
|
||||||
|
if not os.path.isfile(Evaluado):
|
||||||
|
ExtractMapImage(ff,CM,countyear,Evaluado,nc)
|
||||||
|
cc=cc+1
|
||||||
|
now=time.time()
|
||||||
|
print(cc,(start-now)/cc,(start-now)/cc*(Total-cc))
|
||||||
|
|
||||||
|
ssp=["ssp245","ssp370","ssp585"]
|
||||||
|
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")#,"ensemble5","ensemble8")
|
||||||
|
Colorpalete=["RdYlBu",'Spectral','ocean',"coolwarm",]
|
||||||
|
ExportDirectory="img/"
|
||||||
|
DataDirectory="../Data/"
|
||||||
|
|
||||||
|
ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,220 @@
|
||||||
|
import xarray as xr
|
||||||
|
import rioxarray as rio
|
||||||
|
from matplotlib import cm
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.image as imgg
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
def write_png(data,name, origin='upper', colormapD=None):
|
||||||
|
"""
|
||||||
|
Transform an array of data into a PNG string.
|
||||||
|
This can be written to disk using binary I/O, or encoded using base64
|
||||||
|
for an inline PNG like this:
|
||||||
|
|
||||||
|
>>> png_str = write_png(array)
|
||||||
|
>>> "data:image/png;base64,"+png_str.encode('base64')
|
||||||
|
|
||||||
|
Inspired from
|
||||||
|
https://stackoverflow.com/questions/902761/saving-a-numpy-array-as-an-image
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
data: numpy array or equivalent list-like object.
|
||||||
|
Must be NxM (mono), NxMx3 (RGB) or NxMx4 (RGBA)
|
||||||
|
|
||||||
|
origin : ['upper' | 'lower'], optional, default 'upper'
|
||||||
|
Place the [0,0] index of the array in the upper left or lower left
|
||||||
|
corner of the axes.
|
||||||
|
|
||||||
|
colormap : callable, used only for `mono` image.
|
||||||
|
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
|
||||||
|
for transforming a mono image into RGB.
|
||||||
|
It must output iterables of length 3 or 4, with values between
|
||||||
|
0. and 1. Hint: you can use colormaps from `matplotlib.cm`.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
PNG formatted byte string
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
if colormapD is None:
|
||||||
|
def colormapD(x):
|
||||||
|
return (x, x, x, 1)
|
||||||
|
arr = np.atleast_3d(data)
|
||||||
|
height, width, nblayers = arr.shape
|
||||||
|
if nblayers not in [1, 3, 4]:
|
||||||
|
raise ValueError('Data must be NxM (mono), '
|
||||||
|
'NxMx3 (RGB), or NxMx4 (RGBA)')
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
if nblayers == 1:
|
||||||
|
arr = np.array(list(map(colormapD, arr.ravel())))
|
||||||
|
nblayers = arr.shape[1]
|
||||||
|
if nblayers not in [3, 4]:
|
||||||
|
raise ValueError('colormap must provide colors of r'
|
||||||
|
'length 3 (RGB) or 4 (RGBA)')
|
||||||
|
arr = arr.reshape((height, width, nblayers))
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
if nblayers == 3:
|
||||||
|
arr = np.concatenate((arr, np.ones((height, width, 1))), axis=2)
|
||||||
|
nblayers = 4
|
||||||
|
assert arr.shape == (height, width, nblayers)
|
||||||
|
assert nblayers == 4
|
||||||
|
# Normalize to uint8 if it isn't already.
|
||||||
|
if arr.dtype != 'uint8':
|
||||||
|
with np.errstate(divide='ignore', invalid='ignore'):
|
||||||
|
arr = arr * 255./np.array([1., 1., 1., 1.]).reshape((1, 1, 4))
|
||||||
|
arr[~np.isfinite(arr)] = 0
|
||||||
|
arr = arr.astype('uint8')
|
||||||
|
# Eventually flip the image.
|
||||||
|
if origin == 'upper':
|
||||||
|
arr = arr[::-1, :, :]
|
||||||
|
r3 = arr.copy(order='C')
|
||||||
|
matplotlib.image.imsave(name, r3)
|
||||||
|
|
||||||
|
|
||||||
|
def image_to_url(image,name, colormapD=None, origin='lower'):
|
||||||
|
"""
|
||||||
|
Infers the type of an image argument and transforms it into a URL.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
image: string, file or array-like object
|
||||||
|
* If string, it will be written directly in the output file.
|
||||||
|
* If file, it's content will be converted as embedded in the
|
||||||
|
output file.
|
||||||
|
* If array-like, it will be converted to PNG base64 string and
|
||||||
|
embedded in the output.
|
||||||
|
origin: ['upper' | 'lower'], optional, default 'upper'
|
||||||
|
Place the [0, 0] index of the array in the upper left or
|
||||||
|
lower left corner of the axes.
|
||||||
|
colormap: callable, used only for `mono` image.
|
||||||
|
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
|
||||||
|
for transforming a mono image into RGB.
|
||||||
|
It must output iterables of length 3 or 4, with values between
|
||||||
|
0. and 1. You can use colormaps from `matplotlib.cm`.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
if 'ndarray' in image.__class__.__name__:
|
||||||
|
img = write_png(image, origin=origin, colormapD=colormapD,name=name)
|
||||||
|
|
||||||
|
def get_colorD(x,Tempcm,Min,Max,np):#*
|
||||||
|
"""Calculate color of pixel
|
||||||
|
Args:
|
||||||
|
x (float): Value of pixel
|
||||||
|
Tempcm (array): Colormap values
|
||||||
|
Min (float): min value
|
||||||
|
Max (float): max value
|
||||||
|
ls (_type_): linear interpolation function
|
||||||
|
decimals (_type_): number of decimals
|
||||||
|
np (_type_): library numpy
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
array (4x1): array of color rbga
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
try:
|
||||||
|
if x <= 0:
|
||||||
|
x = 0
|
||||||
|
else:
|
||||||
|
x = x+1
|
||||||
|
if x > 21:
|
||||||
|
x = 21
|
||||||
|
x = int(np.fix(x))
|
||||||
|
except:
|
||||||
|
return Tempcm[-1]
|
||||||
|
|
||||||
|
return Tempcm[x]
|
||||||
|
|
||||||
|
def ExtractMapImage(file,colormap,countyear,name,nc,geometry=""):
|
||||||
|
import matplotlib as mpl
|
||||||
|
nc = nc.rio.write_crs(4326)
|
||||||
|
if geometry=="":
|
||||||
|
try:
|
||||||
|
nc = nc.rio.clip(geometries)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
bounds=[[float(nc.lat.min().values),float(nc.lon.min().values)],[float(nc.lat.max().values),float(nc.lon.max().values)]]
|
||||||
|
i=countyear
|
||||||
|
|
||||||
|
year=int(nc.time[i].values)
|
||||||
|
print(i,year)
|
||||||
|
ncVar=nc.DHW_q99
|
||||||
|
data = ncVar[i,:,:].values
|
||||||
|
|
||||||
|
|
||||||
|
if colormap=="noaa":
|
||||||
|
Min=np.around(np.nanmin(data),0)
|
||||||
|
Max=np.around(np.nanmax(data),0)
|
||||||
|
cmap=np.array([[200, 250, 250, 255],
|
||||||
|
[ 69, 49, 120, 255],
|
||||||
|
[ 99, 79, 149, 255],
|
||||||
|
[129, 110, 179, 255],
|
||||||
|
[159, 140, 209, 255],
|
||||||
|
[255, 252, 0, 255],
|
||||||
|
[253, 220, 0, 255],
|
||||||
|
[251, 185, 0, 255],
|
||||||
|
[251, 149, 1, 255],
|
||||||
|
[248, 2, 1, 255],
|
||||||
|
[209, 1, 0, 255],
|
||||||
|
[159, 1, 0, 255],
|
||||||
|
[110, 0, 0, 255],
|
||||||
|
[229, 125, 69, 255],
|
||||||
|
[179, 90, 39, 255],
|
||||||
|
[125, 60, 31, 255],
|
||||||
|
[ 84, 45, 19, 255],
|
||||||
|
[239, 33, 239, 255],
|
||||||
|
[200, 25, 200, 255],
|
||||||
|
[159, 18, 159, 255],
|
||||||
|
[120, 10, 120, 255],
|
||||||
|
[ 49, 2, 49, 255],
|
||||||
|
[200, 250, 250, 255],
|
||||||
|
[ 49, 2, 49, 255],
|
||||||
|
[ 0, 0, 0, 0]], dtype=np.uint8)
|
||||||
|
image_to_url(data, name,colormapD=lambda x: get_colorD(x,cmap,Min,Max,np), origin='upper')
|
||||||
|
|
||||||
|
|
||||||
|
def ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory):
|
||||||
|
cc=0
|
||||||
|
Var="DHW"
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
for CM in Colorpalete:
|
||||||
|
for countyear in range(115):
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
|
||||||
|
if not os.path.isfile(Evaluado):
|
||||||
|
cc=cc+1
|
||||||
|
|
||||||
|
Total=cc
|
||||||
|
start=time.time()
|
||||||
|
cc=0
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
for CM in Colorpalete:
|
||||||
|
for countyear in range(115):
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
Evaluado=ExportDirectory+"%s_%s"%("noaa",ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
|
||||||
|
if not os.path.isfile(Evaluado):
|
||||||
|
ExtractMapImage(ff,"noaa",countyear,Evaluado,nc)
|
||||||
|
cc=cc+1
|
||||||
|
now=time.time()
|
||||||
|
print(cc,(start-now)/cc,(start-now)/cc*(Total-cc))
|
||||||
|
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
|
||||||
|
Colorpalete=['CRW-NOAA']
|
||||||
|
ExportDirectory="img/"
|
||||||
|
DataDirectory="../Data/"
|
||||||
|
|
||||||
|
ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory)
|
|
@ -0,0 +1,54 @@
|
||||||
|
affine==2.3.0
|
||||||
|
attrs==21.4.0
|
||||||
|
beautifulsoup4==4.10.0
|
||||||
|
branca==0.4.2
|
||||||
|
certifi==2021.10.8
|
||||||
|
cftime==1.5.2
|
||||||
|
charset-normalizer==2.0.10
|
||||||
|
click==8.0.4
|
||||||
|
click-plugins==1.1.1
|
||||||
|
cligj==0.7.2
|
||||||
|
contourpy==1.0.5
|
||||||
|
cycler==0.11.0
|
||||||
|
docopt==0.6.2
|
||||||
|
folium==0.12.1.post1
|
||||||
|
fonttools==4.37.4
|
||||||
|
h5netcdf==0.14.0
|
||||||
|
h5py==3.6.0
|
||||||
|
idna==3.3
|
||||||
|
imageio==2.16.1
|
||||||
|
Jinja2==3.0.3
|
||||||
|
joblib==1.1.0
|
||||||
|
kiwisolver==1.3.2
|
||||||
|
MarkupSafe==2.0.1
|
||||||
|
matplotlib==3.6.0
|
||||||
|
netCDF4==1.5.8
|
||||||
|
networkx==2.7
|
||||||
|
numpy==1.22.0
|
||||||
|
packaging==21.3
|
||||||
|
pandas==1.4.1
|
||||||
|
Pillow==9.0.1
|
||||||
|
plotly==5.6.0
|
||||||
|
Pydap==3.2.2
|
||||||
|
pyparsing==3.0.7
|
||||||
|
pyproj==3.3.0
|
||||||
|
python-dateutil==2.8.2
|
||||||
|
pytz==2021.3
|
||||||
|
PyWavelets==1.2.0
|
||||||
|
rasterio==1.2.10
|
||||||
|
requests==2.27.1
|
||||||
|
rioxarray==0.12.2
|
||||||
|
scikit-image==0.19.2
|
||||||
|
scikit-learn==1.0.2
|
||||||
|
scipy==1.8.0
|
||||||
|
Shapely==1.8.4
|
||||||
|
six==1.16.0
|
||||||
|
sklearn==0.0
|
||||||
|
snuggs==1.4.7
|
||||||
|
soupsieve==2.3.1
|
||||||
|
tenacity==8.0.1
|
||||||
|
threadpoolctl==3.1.0
|
||||||
|
tifffile==2022.2.9
|
||||||
|
urllib3==1.26.8
|
||||||
|
WebOb==1.8.7
|
||||||
|
xarray==0.21.1
|
|
@ -0,0 +1,134 @@
|
||||||
|
import xarray as xr
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
import os
|
||||||
|
import os
|
||||||
|
import moviepy.video.io.ImageSequenceClip
|
||||||
|
|
||||||
|
def calculategetValuesColormap(nc2,year):#*
|
||||||
|
""" Calculate values of colormap
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nc (nc data): all layer of nc
|
||||||
|
year (int): year
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Min (float): Minimum value
|
||||||
|
Max (float): Maximun value
|
||||||
|
q1 (float): q1 value
|
||||||
|
q50 (float): q50 value
|
||||||
|
q25 (float): q25 value
|
||||||
|
q75 (float): q75 value
|
||||||
|
q99 (float): q99 value
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
try:
|
||||||
|
q1=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.01),2)
|
||||||
|
Min=np.around(np.nanmin(nc2[int(year)-1986,:,:].values),2)
|
||||||
|
Max=np.around(np.nanmax(nc2[int(year)-1986,:,:].values),2)
|
||||||
|
q99=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.99),1)
|
||||||
|
q50= np.around((q1+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
|
||||||
|
q25= np.around((q1+q50)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
|
||||||
|
q75= np.around((q50+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return Min,Max,q1,q50,q25,q75,q99
|
||||||
|
|
||||||
|
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
|
||||||
|
draw = ImageDraw.Draw(back_im)
|
||||||
|
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
|
||||||
|
textwidth, textheight = draw.textsize(str(text))
|
||||||
|
#print(textwidth, textheight,text)
|
||||||
|
if colormap:
|
||||||
|
x=x-textheight
|
||||||
|
draw.text((x, y), str(text),color,title_font)
|
||||||
|
return back_im
|
||||||
|
|
||||||
|
def ProcessAllImage(ssp,model,Colormap):
|
||||||
|
cc=0
|
||||||
|
Var="DHW"
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ff="../Data/%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
print(ff)
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
for countyear in range(len(nc.time)):
|
||||||
|
|
||||||
|
|
||||||
|
#try:
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
path='./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year)
|
||||||
|
isFile = os.path.isfile(path)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ path)
|
||||||
|
continue
|
||||||
|
#print(ff,year)
|
||||||
|
im1 = Image.open('./CapasJuntas_%s.png'%(Colormap))
|
||||||
|
im2 = Image.open('../2nc2image/img/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
|
||||||
|
back_im = im1.copy()
|
||||||
|
back_im.paste(im2, (0, 27))
|
||||||
|
#final2 = Image.new("RGBA", back_im.size)
|
||||||
|
#final2 = Image.alpha_composite(final2, back_im)
|
||||||
|
#im3 = Image.open("/home/mario/Documentos/Ocean/NetcdfToPng/CapasCoralJunta.png")
|
||||||
|
#final2 = Image.alpha_composite(final2, im3)
|
||||||
|
#back_im=final2
|
||||||
|
im3 = Image.open("./FondoRosa.png")
|
||||||
|
final2 = Image.alpha_composite(im3,back_im)
|
||||||
|
back_im=final2
|
||||||
|
x=10
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,year,x,y+2,(0, 0, 0))
|
||||||
|
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
|
||||||
|
x=500
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,i,x,y+2,(0, 0, 0))
|
||||||
|
x=570
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,j,x,y+2,(0, 0, 0))
|
||||||
|
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
|
||||||
|
|
||||||
|
back_im.save('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year), quality=100)
|
||||||
|
|
||||||
|
ListY=[]
|
||||||
|
path="Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm"
|
||||||
|
isFile = os.path.isfile(path)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ path)
|
||||||
|
continue
|
||||||
|
for year in range(1986,2101):
|
||||||
|
ListY.append('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
|
||||||
|
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".avi",codec="rawvideo")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#except:
|
||||||
|
# print(3432)
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
|
||||||
|
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
#model=("ensemble5","ensemble8")
|
||||||
|
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
|
||||||
|
Colormaps=["noaa"]
|
||||||
|
for Colormap in Colormaps:
|
||||||
|
ProcessAllImage(ssp,model,Colormap)
|
||||||
|
|
||||||
|
|
||||||
|
import moviepy.video.io.ImageSequenceClip
|
||||||
|
|
||||||
|
Var="DHW"
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
|
||||||
|
Colormaps=["noaa"]
|
||||||
|
for Colormap in Colormaps:
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ListY=[]
|
||||||
|
for year in range(1986,2101):
|
||||||
|
ListY.append('ConCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
|
||||||
|
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_ON"%(Colormap,Var,i,j)+".webm")
|
||||||
|
|
|
@ -0,0 +1,206 @@
|
||||||
|
import xarray as xr
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
import os
|
||||||
|
import moviepy.video.io.ImageSequenceClip
|
||||||
|
|
||||||
|
def calculategetValuesColormap(nc2,year):#*
|
||||||
|
""" Calculate values of colormap
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nc (nc data): all layer of nc
|
||||||
|
year (int): year
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Min (float): Minimum value
|
||||||
|
Max (float): Maximun value
|
||||||
|
q1 (float): q1 value
|
||||||
|
q50 (float): q50 value
|
||||||
|
q25 (float): q25 value
|
||||||
|
q75 (float): q75 value
|
||||||
|
q99 (float): q99 value
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
try:
|
||||||
|
q1=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.01),2)
|
||||||
|
Min=np.around(np.nanmin(nc2[int(year)-1986,:,:].values),2)
|
||||||
|
Max=np.around(np.nanmax(nc2[int(year)-1986,:,:].values),2)
|
||||||
|
q99=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.99),2)
|
||||||
|
q50= int(np.around((q1+q99)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
|
||||||
|
q25= int(np.around((q1+q50)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
|
||||||
|
q75= int(np.around((q50+q99)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
|
||||||
|
if q99<10:
|
||||||
|
q99=8
|
||||||
|
q1=0
|
||||||
|
q25=2
|
||||||
|
q50=4
|
||||||
|
q75=6
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return Min,Max,q1,q50,q25,q75,q99
|
||||||
|
|
||||||
|
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
|
||||||
|
draw = ImageDraw.Draw(back_im)
|
||||||
|
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
|
||||||
|
textwidth, textheight = draw.textsize(str(text))
|
||||||
|
#print(textwidth, textheight,text)
|
||||||
|
if colormap:
|
||||||
|
x=x-textheight
|
||||||
|
draw.text((x, y), str(text),color,title_font)
|
||||||
|
return back_im
|
||||||
|
|
||||||
|
def ProcessAllImage(ssp,model,Colormap):
|
||||||
|
cc=0
|
||||||
|
Var="DHW"
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
|
||||||
|
ff="../Data/%s_%s_%s_DHW.nc"%(Var,i,j)
|
||||||
|
|
||||||
|
print(ff)
|
||||||
|
try:
|
||||||
|
print(ff)
|
||||||
|
nc = xr.open_dataset(ff, decode_coords="all")
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
for countyear in range(len(nc.time)):
|
||||||
|
|
||||||
|
|
||||||
|
#try:
|
||||||
|
nc2=nc.DHW_q99
|
||||||
|
year=int(nc.time[countyear].values)
|
||||||
|
path='SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year)
|
||||||
|
isFile = os.path.isfile(path)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ path)
|
||||||
|
continue
|
||||||
|
|
||||||
|
#print(ff,year)
|
||||||
|
Min,Max,q1,q50,q25,q75,q99=calculategetValuesColormap(nc2,year)
|
||||||
|
#print(Min,Max,q1,q50,q25,q75,q99)
|
||||||
|
print(year)
|
||||||
|
if q1<0.01:
|
||||||
|
q1=0.01
|
||||||
|
im1 = Image.open('./CapasJuntas_%s.png'%(Colormap))
|
||||||
|
im2 = Image.open('../2nc2image/img/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
|
||||||
|
back_im = im1.copy()
|
||||||
|
back_im.paste(im2, (0, 27))
|
||||||
|
final2 = Image.new("RGBA", back_im.size)
|
||||||
|
final2 = Image.alpha_composite(final2, back_im)
|
||||||
|
im3 = Image.open("./FondoRosa.png")
|
||||||
|
final2 = Image.alpha_composite(im3,final2)
|
||||||
|
back_im=final2
|
||||||
|
x=10
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,year,x,y+2,(0, 0, 0))
|
||||||
|
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
|
||||||
|
x=500
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,i,x,y+2,(0, 0, 0))
|
||||||
|
x=570
|
||||||
|
y=0
|
||||||
|
back_im=textdraw(back_im,j,x,y+2,(0, 0, 0))
|
||||||
|
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
|
||||||
|
x=230
|
||||||
|
y=197
|
||||||
|
back_im=textdraw(back_im,"<"+str(q1),x,y,(205, 205, 205),12,True)
|
||||||
|
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
|
||||||
|
x1=470#91
|
||||||
|
back_im=textdraw(back_im,">"+str(q99),x1,y,(205, 205, 205),12,True)
|
||||||
|
x2=(x+x1)/2#53
|
||||||
|
back_im=textdraw(back_im,str(q50),x2,y,(205, 205, 205),12,True)
|
||||||
|
x3=(x2+x1)/2
|
||||||
|
back_im=textdraw(back_im,str(q75),x3,y,(205, 205, 205),12,True)
|
||||||
|
x4=(x+x2)/2
|
||||||
|
back_im=textdraw(back_im,str(q25),x4,y,(205, 205, 205),12,True)
|
||||||
|
back_im.save('SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year), quality=95)
|
||||||
|
|
||||||
|
|
||||||
|
ListY=[]
|
||||||
|
path="Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm"
|
||||||
|
isFile = os.path.isfile(path)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ path)
|
||||||
|
continue
|
||||||
|
for year in range(1986,2101):
|
||||||
|
ListY.append('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
|
||||||
|
movie_clip.write_videofile("./Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm")
|
||||||
|
|
||||||
|
#except:
|
||||||
|
# print(3432)
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
|
||||||
|
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM","ensemble5","ensemble8",)
|
||||||
|
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
|
||||||
|
for Colormap in Colormaps:
|
||||||
|
ProcessAllImage(ssp,model,Colormap)
|
||||||
|
|
||||||
|
|
||||||
|
import xarray as xr
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
# for e in os.walk('./SinCoralN'):
|
||||||
|
# pass
|
||||||
|
# for file in e[2]:
|
||||||
|
# #print(file)
|
||||||
|
|
||||||
|
# back_im = Image.open("./SinCoralN/"+file)
|
||||||
|
|
||||||
|
# final2 = Image.new("RGBA", back_im.size)
|
||||||
|
# #print(back_im.size,final2.size)
|
||||||
|
# im1 = Image.open("./3CoralesOrig.png")
|
||||||
|
# final2.paste(im1, (0, 27))
|
||||||
|
# #print(back_im.size,final2.size)
|
||||||
|
|
||||||
|
# final2 = Image.alpha_composite(back_im,final2,)
|
||||||
|
# final2.save("./ConcoralN/"+file, quality=95)
|
||||||
|
|
||||||
|
for e in os.walk('./SinCoralN'):
|
||||||
|
pass
|
||||||
|
for file in e[2]:
|
||||||
|
print(file)
|
||||||
|
isFile = os.path.isfile("./ConCoralN/"+file)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ "./ConCoralN/"+file)
|
||||||
|
continue
|
||||||
|
|
||||||
|
back_im = Image.open("./SinCoralN/"+file)
|
||||||
|
|
||||||
|
final2 = Image.new("RGBA", back_im.size)
|
||||||
|
#print(back_im.size,final2.size)
|
||||||
|
im1 = Image.open("./3CoralesOrig.png")
|
||||||
|
final2.paste(im1, (0, 27))
|
||||||
|
#print(back_im.size,final2.size)
|
||||||
|
|
||||||
|
final2 = Image.alpha_composite(back_im,final2,)
|
||||||
|
final2.save("./ConCoralN/"+file, quality=95)
|
||||||
|
|
||||||
|
|
||||||
|
import moviepy.video.io.ImageSequenceClip
|
||||||
|
Var="DHW"
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
model=("BCC-CSM2-MR","CESM2","CanESM5","IPSL-CM6A-LR","MIROC6","NorESM2-MM","MRI-ESM2-0","EC-Earth3")
|
||||||
|
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
|
||||||
|
for Colormap in Colormaps:
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ListY=[]
|
||||||
|
path="Videos/Animated_%s_%s_%s_%s_ON"%(Colormap,Var,i,j)+".webm"
|
||||||
|
isFile = os.path.isfile(path)
|
||||||
|
if isFile:
|
||||||
|
print(" Ya existe "+ path)
|
||||||
|
continue
|
||||||
|
for year in range(1986,2101):
|
||||||
|
ListY.append('./ConCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
print("%s_%s_%s_%s_ON"%(Colormap,Var,i,j))
|
||||||
|
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
|
||||||
|
movie_clip.write_videofile(path)
|
||||||
|
|
||||||
|
|
After Width: | Height: | Size: 7.6 KiB |
After Width: | Height: | Size: 2.7 KiB |
After Width: | Height: | Size: 2.7 KiB |
After Width: | Height: | Size: 2.6 KiB |
After Width: | Height: | Size: 3.3 KiB |
After Width: | Height: | Size: 7.0 KiB |
After Width: | Height: | Size: 3.0 KiB |
After Width: | Height: | Size: 6.2 KiB |
|
@ -0,0 +1,202 @@
|
||||||
|
|
||||||
|
Apache License
|
||||||
|
Version 2.0, January 2004
|
||||||
|
http://www.apache.org/licenses/
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||||
|
|
||||||
|
1. Definitions.
|
||||||
|
|
||||||
|
"License" shall mean the terms and conditions for use, reproduction,
|
||||||
|
and distribution as defined by Sections 1 through 9 of this document.
|
||||||
|
|
||||||
|
"Licensor" shall mean the copyright owner or entity authorized by
|
||||||
|
the copyright owner that is granting the License.
|
||||||
|
|
||||||
|
"Legal Entity" shall mean the union of the acting entity and all
|
||||||
|
other entities that control, are controlled by, or are under common
|
||||||
|
control with that entity. For the purposes of this definition,
|
||||||
|
"control" means (i) the power, direct or indirect, to cause the
|
||||||
|
direction or management of such entity, whether by contract or
|
||||||
|
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||||
|
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||||
|
|
||||||
|
"You" (or "Your") shall mean an individual or Legal Entity
|
||||||
|
exercising permissions granted by this License.
|
||||||
|
|
||||||
|
"Source" form shall mean the preferred form for making modifications,
|
||||||
|
including but not limited to software source code, documentation
|
||||||
|
source, and configuration files.
|
||||||
|
|
||||||
|
"Object" form shall mean any form resulting from mechanical
|
||||||
|
transformation or translation of a Source form, including but
|
||||||
|
not limited to compiled object code, generated documentation,
|
||||||
|
and conversions to other media types.
|
||||||
|
|
||||||
|
"Work" shall mean the work of authorship, whether in Source or
|
||||||
|
Object form, made available under the License, as indicated by a
|
||||||
|
copyright notice that is included in or attached to the work
|
||||||
|
(an example is provided in the Appendix below).
|
||||||
|
|
||||||
|
"Derivative Works" shall mean any work, whether in Source or Object
|
||||||
|
form, that is based on (or derived from) the Work and for which the
|
||||||
|
editorial revisions, annotations, elaborations, or other modifications
|
||||||
|
represent, as a whole, an original work of authorship. For the purposes
|
||||||
|
of this License, Derivative Works shall not include works that remain
|
||||||
|
separable from, or merely link (or bind by name) to the interfaces of,
|
||||||
|
the Work and Derivative Works thereof.
|
||||||
|
|
||||||
|
"Contribution" shall mean any work of authorship, including
|
||||||
|
the original version of the Work and any modifications or additions
|
||||||
|
to that Work or Derivative Works thereof, that is intentionally
|
||||||
|
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||||
|
or by an individual or Legal Entity authorized to submit on behalf of
|
||||||
|
the copyright owner. For the purposes of this definition, "submitted"
|
||||||
|
means any form of electronic, verbal, or written communication sent
|
||||||
|
to the Licensor or its representatives, including but not limited to
|
||||||
|
communication on electronic mailing lists, source code control systems,
|
||||||
|
and issue tracking systems that are managed by, or on behalf of, the
|
||||||
|
Licensor for the purpose of discussing and improving the Work, but
|
||||||
|
excluding communication that is conspicuously marked or otherwise
|
||||||
|
designated in writing by the copyright owner as "Not a Contribution."
|
||||||
|
|
||||||
|
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||||
|
on behalf of whom a Contribution has been received by Licensor and
|
||||||
|
subsequently incorporated within the Work.
|
||||||
|
|
||||||
|
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
copyright license to reproduce, prepare Derivative Works of,
|
||||||
|
publicly display, publicly perform, sublicense, and distribute the
|
||||||
|
Work and such Derivative Works in Source or Object form.
|
||||||
|
|
||||||
|
3. Grant of Patent License. Subject to the terms and conditions of
|
||||||
|
this License, each Contributor hereby grants to You a perpetual,
|
||||||
|
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||||
|
(except as stated in this section) patent license to make, have made,
|
||||||
|
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||||
|
where such license applies only to those patent claims licensable
|
||||||
|
by such Contributor that are necessarily infringed by their
|
||||||
|
Contribution(s) alone or by combination of their Contribution(s)
|
||||||
|
with the Work to which such Contribution(s) was submitted. If You
|
||||||
|
institute patent litigation against any entity (including a
|
||||||
|
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||||
|
or a Contribution incorporated within the Work constitutes direct
|
||||||
|
or contributory patent infringement, then any patent licenses
|
||||||
|
granted to You under this License for that Work shall terminate
|
||||||
|
as of the date such litigation is filed.
|
||||||
|
|
||||||
|
4. Redistribution. You may reproduce and distribute copies of the
|
||||||
|
Work or Derivative Works thereof in any medium, with or without
|
||||||
|
modifications, and in Source or Object form, provided that You
|
||||||
|
meet the following conditions:
|
||||||
|
|
||||||
|
(a) You must give any other recipients of the Work or
|
||||||
|
Derivative Works a copy of this License; and
|
||||||
|
|
||||||
|
(b) You must cause any modified files to carry prominent notices
|
||||||
|
stating that You changed the files; and
|
||||||
|
|
||||||
|
(c) You must retain, in the Source form of any Derivative Works
|
||||||
|
that You distribute, all copyright, patent, trademark, and
|
||||||
|
attribution notices from the Source form of the Work,
|
||||||
|
excluding those notices that do not pertain to any part of
|
||||||
|
the Derivative Works; and
|
||||||
|
|
||||||
|
(d) If the Work includes a "NOTICE" text file as part of its
|
||||||
|
distribution, then any Derivative Works that You distribute must
|
||||||
|
include a readable copy of the attribution notices contained
|
||||||
|
within such NOTICE file, excluding those notices that do not
|
||||||
|
pertain to any part of the Derivative Works, in at least one
|
||||||
|
of the following places: within a NOTICE text file distributed
|
||||||
|
as part of the Derivative Works; within the Source form or
|
||||||
|
documentation, if provided along with the Derivative Works; or,
|
||||||
|
within a display generated by the Derivative Works, if and
|
||||||
|
wherever such third-party notices normally appear. The contents
|
||||||
|
of the NOTICE file are for informational purposes only and
|
||||||
|
do not modify the License. You may add Your own attribution
|
||||||
|
notices within Derivative Works that You distribute, alongside
|
||||||
|
or as an addendum to the NOTICE text from the Work, provided
|
||||||
|
that such additional attribution notices cannot be construed
|
||||||
|
as modifying the License.
|
||||||
|
|
||||||
|
You may add Your own copyright statement to Your modifications and
|
||||||
|
may provide additional or different license terms and conditions
|
||||||
|
for use, reproduction, or distribution of Your modifications, or
|
||||||
|
for any such Derivative Works as a whole, provided Your use,
|
||||||
|
reproduction, and distribution of the Work otherwise complies with
|
||||||
|
the conditions stated in this License.
|
||||||
|
|
||||||
|
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||||
|
any Contribution intentionally submitted for inclusion in the Work
|
||||||
|
by You to the Licensor shall be under the terms and conditions of
|
||||||
|
this License, without any additional terms or conditions.
|
||||||
|
Notwithstanding the above, nothing herein shall supersede or modify
|
||||||
|
the terms of any separate license agreement you may have executed
|
||||||
|
with Licensor regarding such Contributions.
|
||||||
|
|
||||||
|
6. Trademarks. This License does not grant permission to use the trade
|
||||||
|
names, trademarks, service marks, or product names of the Licensor,
|
||||||
|
except as required for reasonable and customary use in describing the
|
||||||
|
origin of the Work and reproducing the content of the NOTICE file.
|
||||||
|
|
||||||
|
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||||
|
agreed to in writing, Licensor provides the Work (and each
|
||||||
|
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||||
|
implied, including, without limitation, any warranties or conditions
|
||||||
|
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||||
|
appropriateness of using or redistributing the Work and assume any
|
||||||
|
risks associated with Your exercise of permissions under this License.
|
||||||
|
|
||||||
|
8. Limitation of Liability. In no event and under no legal theory,
|
||||||
|
whether in tort (including negligence), contract, or otherwise,
|
||||||
|
unless required by applicable law (such as deliberate and grossly
|
||||||
|
negligent acts) or agreed to in writing, shall any Contributor be
|
||||||
|
liable to You for damages, including any direct, indirect, special,
|
||||||
|
incidental, or consequential damages of any character arising as a
|
||||||
|
result of this License or out of the use or inability to use the
|
||||||
|
Work (including but not limited to damages for loss of goodwill,
|
||||||
|
work stoppage, computer failure or malfunction, or any and all
|
||||||
|
other commercial damages or losses), even if such Contributor
|
||||||
|
has been advised of the possibility of such damages.
|
||||||
|
|
||||||
|
9. Accepting Warranty or Additional Liability. While redistributing
|
||||||
|
the Work or Derivative Works thereof, You may choose to offer,
|
||||||
|
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||||
|
or other liability obligations and/or rights consistent with this
|
||||||
|
License. However, in accepting such obligations, You may act only
|
||||||
|
on Your own behalf and on Your sole responsibility, not on behalf
|
||||||
|
of any other Contributor, and only if You agree to indemnify,
|
||||||
|
defend, and hold each Contributor harmless for any liability
|
||||||
|
incurred by, or claims asserted against, such Contributor by reason
|
||||||
|
of your accepting any such warranty or additional liability.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
APPENDIX: How to apply the Apache License to your work.
|
||||||
|
|
||||||
|
To apply the Apache License to your work, attach the following
|
||||||
|
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||||
|
replaced with your own identifying information. (Don't include
|
||||||
|
the brackets!) The text should be enclosed in the appropriate
|
||||||
|
comment syntax for the file format. We also recommend that a
|
||||||
|
file or class name and description of purpose be included on the
|
||||||
|
same "printed page" as the copyright notice for easier
|
||||||
|
identification within third-party archives.
|
||||||
|
|
||||||
|
Copyright [yyyy] [name of copyright owner]
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
|
@ -0,0 +1,73 @@
|
||||||
|
import xarray as xr
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
import os
|
||||||
|
import moviepy.video.io.ImageSequenceClip
|
||||||
|
|
||||||
|
def calculategetValuesColormap(nc2,year):#*
|
||||||
|
""" Calculate values of colormap
|
||||||
|
|
||||||
|
Args:
|
||||||
|
nc (nc data): all layer of nc
|
||||||
|
year (int): year
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Min (float): Minimum value
|
||||||
|
Max (float): Maximun value
|
||||||
|
q1 (float): q1 value
|
||||||
|
q50 (float): q50 value
|
||||||
|
q25 (float): q25 value
|
||||||
|
q75 (float): q75 value
|
||||||
|
q99 (float): q99 value
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
try:
|
||||||
|
q1=np.around(np.nanquantile(nc2[int(year)-1987,:,:].values, 0.01),2)
|
||||||
|
Min=np.around(np.nanmin(nc2[int(year)-1987,:,:].values),2)
|
||||||
|
Max=np.around(np.nanmax(nc2[int(year)-1987,:,:].values),2)
|
||||||
|
q99=np.around(np.nanquantile(nc2[int(year)-1987,:,:].values, 0.99),2)
|
||||||
|
q50= np.around((q1+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
|
||||||
|
q25= np.around((q1+q50)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
|
||||||
|
q75= np.around((q50+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
|
||||||
|
if q99<10:
|
||||||
|
q99=8
|
||||||
|
q1=0
|
||||||
|
q25=2
|
||||||
|
q50=4
|
||||||
|
q75=6
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return Min,Max,q1,q50,q25,q75,q99
|
||||||
|
|
||||||
|
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
|
||||||
|
draw = ImageDraw.Draw(back_im)
|
||||||
|
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
|
||||||
|
textwidth, textheight = draw.textsize(str(text))
|
||||||
|
#print(textwidth, textheight,text)
|
||||||
|
if colormap:
|
||||||
|
x=x-textheight
|
||||||
|
draw.text((x, y), str(text),color,title_font)
|
||||||
|
return back_im
|
||||||
|
|
||||||
|
def ProcessAllImage(ssp,model,Colormap):
|
||||||
|
cc=0
|
||||||
|
Var="DHW"
|
||||||
|
for i in ssp:
|
||||||
|
for j in model:
|
||||||
|
ListY=[]
|
||||||
|
for year in range(1987,2101):
|
||||||
|
ListY.append('/home/mario/Documentos/Ocean/NetcdfToPng/SinCoral/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
|
||||||
|
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
|
||||||
|
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm")
|
||||||
|
|
||||||
|
#except:
|
||||||
|
# print(3432)
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
#break
|
||||||
|
|
||||||
|
|
||||||
|
ssp=("ssp245","ssp370","ssp585")
|
||||||
|
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
|
||||||
|
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
|
||||||
|
for Colormap in Colormaps:
|
||||||
|
ProcessAllImage(ssp,model,Colormap)
|