Scripts in all changes

This commit is contained in:
Mario Gil 2023-09-15 19:24:44 -05:00
parent 986ed56ed7
commit 614110d3af
34 changed files with 1380 additions and 0 deletions

11
.gitignore vendored Normal file
View File

@ -0,0 +1,11 @@
1Teselas/map/*
2nc2image/img/*
3image2video/ConCoralN/*
3image2video/env/*
3image2video/img/*
3image2video/SinCoralN/*
3image2video/Videos/*
Data/*
DataF/*
DataOriginal/*
DataVieja/*

View File

@ -0,0 +1,139 @@
import xarray as xr
import glob
import numpy as np
def ModAttrs(DictOri,site,label,data):
keys=list(DictOri.keys())
NewDict={}
for key in range(len(keys)):
if site==key:
NewDict[label]=data
NewDict[keys[key]]=DictOri[keys[key]]
return NewDict
def date2float(df,var):
V1=df[var].astype("float64")
return V1
def cleanAttr(var,T):
A=T.attrs
if var in A.keys():
A.pop(var)
return A
def Corrector2(file,DataEntry,DataSal):
T=xr.open_dataset(DataEntry+file)
T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
data =T.DHW_q99[0,:,:].values
T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
T["nCellsValid"]=np.count_nonzero(~np.isnan(data))
T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
T.to_netcdf(path=DataSal+file)
def CorrectNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"):
nc1 = xr.open_dataset(Map1+file)#,decode_times=False,decode_timedelta=False
#nc1["DoY_DHW4cal"]=nc1["DoY_DHW4"]
#nc1["DoY_DHW8cal"]=nc1["DoY_DHW8"]
#nc1["nDays_DHW4cal"]=nc1["nDays_DHW4"]
#nc1["nDays_DHW8cal"]=nc1["nDays_DHW8"]
#nc1=nc1.drop("DoY_DHW4")
#nc1=nc1.drop("DoY_DHW8")
#nc1=nc1.drop("nDays_DHW4")
#nc1=nc1.drop("nDays_DHW8")
#nc1["DoY_DHW4"]=nc1["DoYrel_DHW4"]
#nc1["DoY_DHW8"]=nc1["DoYrel_DHW8"]
#nc1=nc1.drop("DoYrel_DHW4")
#nc1=nc1.drop("DoYrel_DHW8")
#nc1=nc1.drop_sel({"time":1986})
df=nc1
try:
df=df.drop("quantile")
except:
print("noq")
df.attrs.keys()
#df.attrs=ModAttrs(df.attrs,5,"label","data")
df.attrs["time_coverage_start"]=1986
data=df.DHW_q99[0,:,:].values
df.attrs=ModAttrs(df.attrs,5,"region_name","Global")
#df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
#df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
file=file.replace("_start1986","").replace("_dec22","")
HH=SalidaDir+file
# df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY",
# 'units': 'day of the year',
# 'comment': "considering the coldest climatological DoY as the first day of the year"}
# df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY",
# 'units': 'day of the year',
# 'comment': "considering the coldest climatological DoY as the first day of the year"}
# df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week",
# "units" : "days"}
# df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week",
# "units" : "days"}
mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0))
df["mask_land"]=mask_land
df["nDays_DHW4"]=df["nDays_DHW4"].astype(np.float64)/1e9/60/60/24
#if np.nanmax(df["nDays_DHW4"].values)>1000:
#df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24
#print("NDais")
df["nDays_DHW8"]=df["nDays_DHW8"].astype(np.float64)/1e9/60/60/24
df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1)
df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1)
#if np.nanmax(df["nDays_DHW8"].values)>1000:
#df["nDays_DHW8"]=df["nDays_DHW8"]
#print("NDais")
# df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64")
# if np.nanmax(df["nDaysrel_DHW4"].values)>1000:
# df["nDaysrel_DHW4"]=df["nDaysrel_DHW4"]/1e9/60/60/24
# print("NDais")
# df["nDaysrel_DHW8"]=df["nDaysrel_DHW8"].astype("float64")
# if np.nanmax(df["nDaysrel_DHW8cal"].values)>1000:
# df["nDaysrel_DHW8"]=df["nDaysrel_DHW8"]/1e9/60/60/24
# print("NDais")
#df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'}
#df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'}
#df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'}
#df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'}
#df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1)
#df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1)
df=df.drop("mask_land")
Tempp=list(df.var().keys())
for i in Tempp:
df[i].attrs=cleanAttr("coordinates",df[i])
# df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
# 'units': 'day of the year',
# 'comment': 'considering January 1st the first day of the year'}
# df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
# 'units': 'day of the year',
# 'comment': 'considering January 1st the first day of the year'}
comp = dict(zlib=True, complevel=5)
encoding = {var: comp for var in df.data_vars}
data =df.DHW_q99[0,:,:].values
df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
df.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
df.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
print(df)
df.to_netcdf(path=HH, encoding=encoding)
nn=0
for i in glob.glob("../DataOriginal/*"):
A=i.split("/")[-1]
SalidaDir="../Data/"
nn+=1
print(A)
CorrectNc(Map1="../DataOriginal/",SalidaDir=SalidaDir,file=A)
print(1)
#if nn>1:
#break
#SalidaDir2="../DataF/"
#Corrector2(A,SalidaDir,SalidaDir2)
#print(2)
#break

View File

@ -0,0 +1,117 @@
import xarray as xr
import glob
import numpy as np
def ModAttrs(DictOri,site,label,data):
keys=list(DictOri.keys())
NewDict={}
for key in range(len(keys)):
if site==key:
NewDict[label]=data
NewDict[keys[key]]=DictOri[keys[key]]
return NewDict
def date2float(df,var):
V1=df[var].astype("float64")
return V1
def cleanAttr(var,T):
A=T.attrs
if var in A.keys():
A.pop(var)
return A
def Corrector2(file,DataEntry,DataSal):
T=xr.open_dataset(DataEntry+file)
T.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
T.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
data =T.DHW_q99[0,:,:].values
T["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
T["nCellsValid"]=np.count_nonzero(~np.isnan(data))
T.nCellsTotal.attrs={"long_name": "number of data cells in selected area"}
T.nCellsValid.attrs={ "long_name": "number of valid data cells in selected area"}
T.to_netcdf(path=DataSal+file)
def FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/",file="DHW_ssp245_BCC-CSM2-MR_DHW.nc"):
nc1 = xr.open_dataset(Map1+file,decode_times=False,decode_timedelta=False)
nc2b = xr.open_dataset(Map2+file,decode_times=False,decode_timedelta=False)
#nc2b=nc2b.drop_sel({"time":1986})
#nc2b=nc2b.drop_sel({"time":1985})
nc1["DoY_DHW4cal"]=nc2b["DoY_DHW4"]
nc1["DoY_DHW8cal"]=nc2b["DoY_DHW8"]
nc1["nDays_DHW4cal"]=nc2b["nDays_DHW4"]
nc1["nDays_DHW8cal"]=nc2b["nDays_DHW8"]
df=nc1
try:
df=df.drop("quantile")
except:
print("noq")
df.attrs.keys()
#df.attrs=ModAttrs(df.attrs,5,"label","data")
df.attrs["time_coverage_start"]=1987
data=df.DHW_q99[0,:,:].values
df.attrs=ModAttrs(df.attrs,5,"region_name","Global")
#df["nCellsTotal"]=np.count_nonzero(np.isnan(data))+np.count_nonzero(~np.isnan(data))
#df["nCellsValid"]=np.count_nonzero(~np.isnan(data))
HH=SalidaDir+file
df.DoY_DHW4.attrs={'long_name': "first day of the year when DHW exceeds 4 degree-weeks, relative to the climatological coldest DOY",
'units': 'day of the year',
'comment': "considering the coldest climatological DoY as the first day of the year"}
df.DoY_DHW8.attrs={'long_name': "first day of the year when DHW exceeds 8 degree-weeks, relative to the climatological coldest DOY",
'units': 'day of the year',
'comment': "considering the coldest climatological DoY as the first day of the year"}
df.nDays_DHW8.attrs={"long_name" : "number of days above 8 degrees-week",
"units" : "days"}
df.nDays_DHW4.attrs={"long_name" : "number of days above 4 degrees-week",
"units" : "days"}
df["nDays_DHW4"]=df["nDays_DHW4"].astype("float64")
if np.nanmax(df["nDays_DHW4"].values)>1000:
df["nDays_DHW4"]=df["nDays_DHW4"]/1e9/60/60/24
df["nDays_DHW8"]=df["nDays_DHW8"].astype("float64")
if np.nanmax(df["nDays_DHW8"].values)>1000:
df["nDays_DHW8"]=df["nDays_DHW8"]/1e9/60/60/24
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].astype("float64")
if np.nanmax(df["nDays_DHW4cal"].values)>1000:
df["nDays_DHW4cal"]=df["nDays_DHW4cal"]/1e9/60/60/24
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].astype("float64")
if np.nanmax(df["nDays_DHW8cal"].values)>1000:
df["nDays_DHW8cal"]=df["nDays_DHW8cal"]/1e9/60/60/24
df["nDays_DHW8"].attrs={'long_name': 'number of days above 8 degrees-week, relative to the climatological coldest DOY'}
df["nDays_DHW4"].attrs={'long_name': 'number of days above 4 degrees-week, relative to the climatological coldest DOY'}
df["nDays_DHW8cal"].attrs={'long_name': 'number of days above 8 degrees-week, considering January 1st the first day of the year'}
df["nDays_DHW4cal"].attrs={'long_name': 'number of days above 4 degrees-week, considering January 1st the first day of the year'}
mask_land = 1 * np.ones((df.dims['lat'], df.dims['lon'])) * np.isnan(df.DHW_q99.isel(time=0))
df["mask_land"]=mask_land
df["nDays_DHW8"]=df["nDays_DHW8"].where(df.mask_land != 1)
df["nDays_DHW4"]=df["nDays_DHW4"].where(df.mask_land != 1)
df["nDays_DHW8cal"]=df["nDays_DHW8cal"].where(df.mask_land != 1)
df["nDays_DHW4cal"]=df["nDays_DHW4cal"].where(df.mask_land != 1)
df=df.drop("mask_land")
Tempp=list(df.var().keys())
for i in Tempp:
df[i].attrs=cleanAttr("coordinates",df[i])
df.DoY_DHW8cal.attrs={'long_name': 'first day of the year when DHW exceeds 8 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
df.DoY_DHW4cal.attrs={'long_name': 'first day of the year when DHW exceeds 4 degree-weeks',
'units': 'day of the year',
'comment': 'considering January 1st the first day of the year'}
comp = dict(zlib=True, complevel=5)
encoding = {var: comp for var in df.data_vars}
df.to_netcdf(path=HH, encoding=encoding)
for i in glob.glob("/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/*"):
A=i.split("/")[-1]
#try:
#SalidaDir="/home/mario/Documentos/Ocean/NetcdfToPng/MapsModificados/"
#file=A
print(A)
#FusionNc(Map1="/home/mario/Documentos/Ocean/NetcdfToPng/NC2023Patron/",Map2="/home/mario/Documentos/Ocean/NetcdfToPng/MapsAModificar/",SalidaDir=SalidaDir,file=file)
#print(1)
#Corrector2(file,SalidaDir,"/home/mario/Documentos/Ocean/NetcdfToPng/MapCorregidoV2/")
#print(2)
#break

6
1Teselas/P1_96P6.jgw Normal file
View File

@ -0,0 +1,6 @@
0.01837109614206981
0
0
-0.01837109614206981
-180.36742192284140174
89.99081445192896922

BIN
1Teselas/P1_96P6.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.0 MiB

0
1Teselas/README.md Normal file
View File

5
1Teselas/init.sh Normal file
View File

@ -0,0 +1,5 @@
docker run -it --mount type=bind,src=/home/mario/Documentos/Ocean/ScuenciaOrganizadaPre/Teselas,dst=/temporal ghcr.io/osgeo/gdal:ubuntu-full-latest bash
gdal2tiles.py -p geodetic -z 0-7 -r average -s EPSG:4326 --xyz -w mapml /temporal/P1_96P6.jpeg /temporal/map

213
2nc2image/ExtractImage.py Normal file
View File

@ -0,0 +1,213 @@
import xarray as xr
import rioxarray as rio
from matplotlib import cm
import numpy as np
import time
import matplotlib
import matplotlib.image as imgg
import os
from PIL import Image, ImageDraw, ImageFont
def write_png(data,name, origin='upper', colormapD=None):
"""
Transform an array of data into a PNG string.
This can be written to disk using binary I/O, or encoded using base64
for an inline PNG like this:
>>> png_str = write_png(array)
>>> "data:image/png;base64,"+png_str.encode('base64')
Inspired from
https://stackoverflow.com/questions/902761/saving-a-numpy-array-as-an-image
Parameters
----------
data: numpy array or equivalent list-like object.
Must be NxM (mono), NxMx3 (RGB) or NxMx4 (RGBA)
origin : ['upper' | 'lower'], optional, default 'upper'
Place the [0,0] index of the array in the upper left or lower left
corner of the axes.
colormap : callable, used only for `mono` image.
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
for transforming a mono image into RGB.
It must output iterables of length 3 or 4, with values between
0. and 1. Hint: you can use colormaps from `matplotlib.cm`.
Returns
-------
PNG formatted byte string
"""
if colormapD is None:
def colormapD(x):
return (x, x, x, 1)
arr = np.atleast_3d(data)
height, width, nblayers = arr.shape
if nblayers not in [1, 3, 4]:
raise ValueError('Data must be NxM (mono), '
'NxMx3 (RGB), or NxMx4 (RGBA)')
assert arr.shape == (height, width, nblayers)
if nblayers == 1:
arr = np.array(list(map(colormapD, arr.ravel())))
nblayers = arr.shape[1]
if nblayers not in [3, 4]:
raise ValueError('colormap must provide colors of r'
'length 3 (RGB) or 4 (RGBA)')
arr = arr.reshape((height, width, nblayers))
assert arr.shape == (height, width, nblayers)
if nblayers == 3:
arr = np.concatenate((arr, np.ones((height, width, 1))), axis=2)
nblayers = 4
assert arr.shape == (height, width, nblayers)
assert nblayers == 4
# Normalize to uint8 if it isn't already.
if arr.dtype != 'uint8':
with np.errstate(divide='ignore', invalid='ignore'):
arr = arr * 255./np.array([1., 1., 1., 1.]).reshape((1, 1, 4))
arr[~np.isfinite(arr)] = 0
arr = arr.astype('uint8')
# Eventually flip the image.
if origin == 'lower':
arr = arr[::-1, :, :]
r3 = arr.copy(order='C')
matplotlib.image.imsave(name, r3)
def image_to_url(image,name, colormapD=None, origin='upper'):
"""
Infers the type of an image argument and transforms it into a URL.
Parameters
----------
image: string, file or array-like object
* If string, it will be written directly in the output file.
* If file, it's content will be converted as embedded in the
output file.
* If array-like, it will be converted to PNG base64 string and
embedded in the output.
origin: ['upper' | 'lower'], optional, default 'upper'
Place the [0, 0] index of the array in the upper left or
lower left corner of the axes.
colormap: callable, used only for `mono` image.
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
for transforming a mono image into RGB.
It must output iterables of length 3 or 4, with values between
0. and 1. You can use colormaps from `matplotlib.cm`.
"""
if 'ndarray' in image.__class__.__name__:
img = write_png(image, origin=origin, colormapD=colormapD,name=name)
def get_color(x,colormap,Min,Max):
decimals = 2
try:
#print(x,Min,Max)
x=(x*1.-Min)/(Max*1.-Min)
#print(x)
if x < 0:
x=0.0
if x > 1.0:
x=1.0
x = np.around(x, decimals=decimals)
if colormap=="Spectral" or colormap=='ocean' or colormap=="RdYlBu":
Tempcm=cm.get_cmap(colormap).reversed()
else:
Tempcm=cm.get_cmap(colormap)
#print(x)
ls = np.around(np.linspace(0,1,10**decimals+1),decimals=decimals)
#print(ls)
if 0 <= x <= 1:
#print(cm.get_cmap('viridis')(ls)[np.argwhere(ls==x)][0][0].shape,cm.get_cmap('viridis')(ls)[np.argwhere(ls==x)])
#print(x,np.argwhere(ls==x))
return Tempcm(ls)[np.argwhere(ls==x)][0][0]
else:
#print(np.array(np.zeros(4)).shape,np.array(np.zeros(4)))
#print(x)
return np.zeros(4)
except:
print(x,np.argwhere(ls==x))
return np.zeros(4)
def ExtractMapImage(file,colormap,countyear,name,nc,geometry=""):
nc = nc.rio.write_crs(4326)
if geometry=="":
try:
nc = nc.rio.clip(geometries)
except:
pass
else:
pass
bounds=[[float(nc.lat.min().values),float(nc.lon.min().values)],[float(nc.lat.max().values),float(nc.lon.max().values)]]
i=countyear
year=int(nc.time[i].values)
print(i,year)
ncVar=nc.DHW_q99
data = ncVar[i,:,:].values
Min=np.around(np.nanquantile(ncVar[int(year)-1986,:,:].values, 0.01),2)
Max=np.around(np.nanquantile(ncVar[int(year)-1986,:,:].values, 0.99),2)#np.around(np.nanmax(ncVar[year-1985,:,:].values),2)
image_to_url(data,name, colormapD=lambda x: get_color(x,colormap,Min,Max), origin="lower")
def ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory):
cc=0
Var="DHW"
for i in ssp:
for j in model:
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
for CM in Colorpalete:
for countyear in range(115):
nc = xr.open_dataset(ff, decode_coords="all")
year=int(nc.time[countyear].values)
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
if not os.path.isfile(Evaluado):
cc=cc+1
Total=cc
start=time.time()
cc=0
for i in ssp:
for j in model:
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
for CM in Colorpalete:
for countyear in range(115):
nc = xr.open_dataset(ff, decode_coords="all")
year=int(nc.time[countyear].values)
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
if not os.path.isfile(Evaluado):
ExtractMapImage(ff,CM,countyear,Evaluado,nc)
cc=cc+1
now=time.time()
print(cc,(start-now)/cc,(start-now)/cc*(Total-cc))
ssp=["ssp245","ssp370","ssp585"]
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")#,"ensemble5","ensemble8")
Colorpalete=["RdYlBu",'Spectral','ocean',"coolwarm",]
ExportDirectory="img/"
DataDirectory="../Data/"
ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory)

View File

@ -0,0 +1,220 @@
import xarray as xr
import rioxarray as rio
from matplotlib import cm
import numpy as np
import time
import matplotlib
import matplotlib.image as imgg
import os
def write_png(data,name, origin='upper', colormapD=None):
"""
Transform an array of data into a PNG string.
This can be written to disk using binary I/O, or encoded using base64
for an inline PNG like this:
>>> png_str = write_png(array)
>>> "data:image/png;base64,"+png_str.encode('base64')
Inspired from
https://stackoverflow.com/questions/902761/saving-a-numpy-array-as-an-image
Parameters
----------
data: numpy array or equivalent list-like object.
Must be NxM (mono), NxMx3 (RGB) or NxMx4 (RGBA)
origin : ['upper' | 'lower'], optional, default 'upper'
Place the [0,0] index of the array in the upper left or lower left
corner of the axes.
colormap : callable, used only for `mono` image.
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
for transforming a mono image into RGB.
It must output iterables of length 3 or 4, with values between
0. and 1. Hint: you can use colormaps from `matplotlib.cm`.
Returns
-------
PNG formatted byte string
"""
if colormapD is None:
def colormapD(x):
return (x, x, x, 1)
arr = np.atleast_3d(data)
height, width, nblayers = arr.shape
if nblayers not in [1, 3, 4]:
raise ValueError('Data must be NxM (mono), '
'NxMx3 (RGB), or NxMx4 (RGBA)')
assert arr.shape == (height, width, nblayers)
if nblayers == 1:
arr = np.array(list(map(colormapD, arr.ravel())))
nblayers = arr.shape[1]
if nblayers not in [3, 4]:
raise ValueError('colormap must provide colors of r'
'length 3 (RGB) or 4 (RGBA)')
arr = arr.reshape((height, width, nblayers))
assert arr.shape == (height, width, nblayers)
if nblayers == 3:
arr = np.concatenate((arr, np.ones((height, width, 1))), axis=2)
nblayers = 4
assert arr.shape == (height, width, nblayers)
assert nblayers == 4
# Normalize to uint8 if it isn't already.
if arr.dtype != 'uint8':
with np.errstate(divide='ignore', invalid='ignore'):
arr = arr * 255./np.array([1., 1., 1., 1.]).reshape((1, 1, 4))
arr[~np.isfinite(arr)] = 0
arr = arr.astype('uint8')
# Eventually flip the image.
if origin == 'upper':
arr = arr[::-1, :, :]
r3 = arr.copy(order='C')
matplotlib.image.imsave(name, r3)
def image_to_url(image,name, colormapD=None, origin='lower'):
"""
Infers the type of an image argument and transforms it into a URL.
Parameters
----------
image: string, file or array-like object
* If string, it will be written directly in the output file.
* If file, it's content will be converted as embedded in the
output file.
* If array-like, it will be converted to PNG base64 string and
embedded in the output.
origin: ['upper' | 'lower'], optional, default 'upper'
Place the [0, 0] index of the array in the upper left or
lower left corner of the axes.
colormap: callable, used only for `mono` image.
Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)]
for transforming a mono image into RGB.
It must output iterables of length 3 or 4, with values between
0. and 1. You can use colormaps from `matplotlib.cm`.
"""
if 'ndarray' in image.__class__.__name__:
img = write_png(image, origin=origin, colormapD=colormapD,name=name)
def get_colorD(x,Tempcm,Min,Max,np):#*
"""Calculate color of pixel
Args:
x (float): Value of pixel
Tempcm (array): Colormap values
Min (float): min value
Max (float): max value
ls (_type_): linear interpolation function
decimals (_type_): number of decimals
np (_type_): library numpy
Returns:
array (4x1): array of color rbga
"""
import numpy as np
try:
if x <= 0:
x = 0
else:
x = x+1
if x > 21:
x = 21
x = int(np.fix(x))
except:
return Tempcm[-1]
return Tempcm[x]
def ExtractMapImage(file,colormap,countyear,name,nc,geometry=""):
import matplotlib as mpl
nc = nc.rio.write_crs(4326)
if geometry=="":
try:
nc = nc.rio.clip(geometries)
except:
pass
else:
pass
bounds=[[float(nc.lat.min().values),float(nc.lon.min().values)],[float(nc.lat.max().values),float(nc.lon.max().values)]]
i=countyear
year=int(nc.time[i].values)
print(i,year)
ncVar=nc.DHW_q99
data = ncVar[i,:,:].values
if colormap=="noaa":
Min=np.around(np.nanmin(data),0)
Max=np.around(np.nanmax(data),0)
cmap=np.array([[200, 250, 250, 255],
[ 69, 49, 120, 255],
[ 99, 79, 149, 255],
[129, 110, 179, 255],
[159, 140, 209, 255],
[255, 252, 0, 255],
[253, 220, 0, 255],
[251, 185, 0, 255],
[251, 149, 1, 255],
[248, 2, 1, 255],
[209, 1, 0, 255],
[159, 1, 0, 255],
[110, 0, 0, 255],
[229, 125, 69, 255],
[179, 90, 39, 255],
[125, 60, 31, 255],
[ 84, 45, 19, 255],
[239, 33, 239, 255],
[200, 25, 200, 255],
[159, 18, 159, 255],
[120, 10, 120, 255],
[ 49, 2, 49, 255],
[200, 250, 250, 255],
[ 49, 2, 49, 255],
[ 0, 0, 0, 0]], dtype=np.uint8)
image_to_url(data, name,colormapD=lambda x: get_colorD(x,cmap,Min,Max,np), origin='upper')
def ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory):
cc=0
Var="DHW"
for i in ssp:
for j in model:
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
for CM in Colorpalete:
for countyear in range(115):
nc = xr.open_dataset(ff, decode_coords="all")
year=int(nc.time[countyear].values)
Evaluado=ExportDirectory+"%s_%s"%(CM,ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
if not os.path.isfile(Evaluado):
cc=cc+1
Total=cc
start=time.time()
cc=0
for i in ssp:
for j in model:
ff=DataDirectory+"%s_%s_%s_DHW.nc"%(Var,i,j)
for CM in Colorpalete:
for countyear in range(115):
nc = xr.open_dataset(ff, decode_coords="all")
year=int(nc.time[countyear].values)
Evaluado=ExportDirectory+"%s_%s"%("noaa",ff.split("/")[-1].replace(".nc","_%s.png"%(year)))
if not os.path.isfile(Evaluado):
ExtractMapImage(ff,"noaa",countyear,Evaluado,nc)
cc=cc+1
now=time.time()
print(cc,(start-now)/cc,(start-now)/cc*(Total-cc))
ssp=("ssp245","ssp370","ssp585")
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
Colorpalete=['CRW-NOAA']
ExportDirectory="img/"
DataDirectory="../Data/"
ProcessAllImage(ssp,model,Colorpalete,ExportDirectory,DataDirectory)

View File

@ -0,0 +1,54 @@
affine==2.3.0
attrs==21.4.0
beautifulsoup4==4.10.0
branca==0.4.2
certifi==2021.10.8
cftime==1.5.2
charset-normalizer==2.0.10
click==8.0.4
click-plugins==1.1.1
cligj==0.7.2
contourpy==1.0.5
cycler==0.11.0
docopt==0.6.2
folium==0.12.1.post1
fonttools==4.37.4
h5netcdf==0.14.0
h5py==3.6.0
idna==3.3
imageio==2.16.1
Jinja2==3.0.3
joblib==1.1.0
kiwisolver==1.3.2
MarkupSafe==2.0.1
matplotlib==3.6.0
netCDF4==1.5.8
networkx==2.7
numpy==1.22.0
packaging==21.3
pandas==1.4.1
Pillow==9.0.1
plotly==5.6.0
Pydap==3.2.2
pyparsing==3.0.7
pyproj==3.3.0
python-dateutil==2.8.2
pytz==2021.3
PyWavelets==1.2.0
rasterio==1.2.10
requests==2.27.1
rioxarray==0.12.2
scikit-image==0.19.2
scikit-learn==1.0.2
scipy==1.8.0
Shapely==1.8.4
six==1.16.0
sklearn==0.0
snuggs==1.4.7
soupsieve==2.3.1
tenacity==8.0.1
threadpoolctl==3.1.0
tifffile==2022.2.9
urllib3==1.26.8
WebOb==1.8.7
xarray==0.21.1

View File

@ -0,0 +1,134 @@
import xarray as xr
from PIL import Image, ImageDraw, ImageFont
import os
import os
import moviepy.video.io.ImageSequenceClip
def calculategetValuesColormap(nc2,year):#*
""" Calculate values of colormap
Args:
nc (nc data): all layer of nc
year (int): year
Returns:
Min (float): Minimum value
Max (float): Maximun value
q1 (float): q1 value
q50 (float): q50 value
q25 (float): q25 value
q75 (float): q75 value
q99 (float): q99 value
"""
import numpy as np
try:
q1=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.01),2)
Min=np.around(np.nanmin(nc2[int(year)-1986,:,:].values),2)
Max=np.around(np.nanmax(nc2[int(year)-1986,:,:].values),2)
q99=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.99),1)
q50= np.around((q1+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
q25= np.around((q1+q50)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
q75= np.around((q50+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
except Exception:
pass
return Min,Max,q1,q50,q25,q75,q99
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
draw = ImageDraw.Draw(back_im)
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
textwidth, textheight = draw.textsize(str(text))
#print(textwidth, textheight,text)
if colormap:
x=x-textheight
draw.text((x, y), str(text),color,title_font)
return back_im
def ProcessAllImage(ssp,model,Colormap):
cc=0
Var="DHW"
for i in ssp:
for j in model:
ff="../Data/%s_%s_%s_DHW.nc"%(Var,i,j)
print(ff)
nc = xr.open_dataset(ff, decode_coords="all")
for countyear in range(len(nc.time)):
#try:
year=int(nc.time[countyear].values)
path='./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year)
isFile = os.path.isfile(path)
if isFile:
print(" Ya existe "+ path)
continue
#print(ff,year)
im1 = Image.open('./CapasJuntas_%s.png'%(Colormap))
im2 = Image.open('../2nc2image/img/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
back_im = im1.copy()
back_im.paste(im2, (0, 27))
#final2 = Image.new("RGBA", back_im.size)
#final2 = Image.alpha_composite(final2, back_im)
#im3 = Image.open("/home/mario/Documentos/Ocean/NetcdfToPng/CapasCoralJunta.png")
#final2 = Image.alpha_composite(final2, im3)
#back_im=final2
im3 = Image.open("./FondoRosa.png")
final2 = Image.alpha_composite(im3,back_im)
back_im=final2
x=10
y=0
back_im=textdraw(back_im,year,x,y+2,(0, 0, 0))
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
x=500
y=0
back_im=textdraw(back_im,i,x,y+2,(0, 0, 0))
x=570
y=0
back_im=textdraw(back_im,j,x,y+2,(0, 0, 0))
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
back_im.save('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year), quality=100)
ListY=[]
path="Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm"
isFile = os.path.isfile(path)
if isFile:
print(" Ya existe "+ path)
continue
for year in range(1986,2101):
ListY.append('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".avi",codec="rawvideo")
#except:
# print(3432)
#break
#break
#break
ssp=("ssp245","ssp370","ssp585")
#model=("ensemble5","ensemble8")
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
Colormaps=["noaa"]
for Colormap in Colormaps:
ProcessAllImage(ssp,model,Colormap)
import moviepy.video.io.ImageSequenceClip
Var="DHW"
ssp=("ssp245","ssp370","ssp585")
model=("ensemble5","ensemble8","BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
Colormaps=["noaa"]
for Colormap in Colormaps:
for i in ssp:
for j in model:
ListY=[]
for year in range(1986,2101):
ListY.append('ConCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_ON"%(Colormap,Var,i,j)+".webm")

206
3image2video/0colormap.py Normal file
View File

@ -0,0 +1,206 @@
import xarray as xr
from PIL import Image, ImageDraw, ImageFont
import os
import moviepy.video.io.ImageSequenceClip
def calculategetValuesColormap(nc2,year):#*
""" Calculate values of colormap
Args:
nc (nc data): all layer of nc
year (int): year
Returns:
Min (float): Minimum value
Max (float): Maximun value
q1 (float): q1 value
q50 (float): q50 value
q25 (float): q25 value
q75 (float): q75 value
q99 (float): q99 value
"""
import numpy as np
try:
q1=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.01),2)
Min=np.around(np.nanmin(nc2[int(year)-1986,:,:].values),2)
Max=np.around(np.nanmax(nc2[int(year)-1986,:,:].values),2)
q99=np.around(np.nanquantile(nc2[int(year)-1986,:,:].values, 0.99),2)
q50= int(np.around((q1+q99)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
q25= int(np.around((q1+q50)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
q75= int(np.around((q50+q99)/2,2))#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
if q99<10:
q99=8
q1=0
q25=2
q50=4
q75=6
except Exception:
pass
return Min,Max,q1,q50,q25,q75,q99
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
draw = ImageDraw.Draw(back_im)
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
textwidth, textheight = draw.textsize(str(text))
#print(textwidth, textheight,text)
if colormap:
x=x-textheight
draw.text((x, y), str(text),color,title_font)
return back_im
def ProcessAllImage(ssp,model,Colormap):
cc=0
Var="DHW"
for i in ssp:
for j in model:
ff="../Data/%s_%s_%s_DHW.nc"%(Var,i,j)
print(ff)
try:
print(ff)
nc = xr.open_dataset(ff, decode_coords="all")
except:
pass
for countyear in range(len(nc.time)):
#try:
nc2=nc.DHW_q99
year=int(nc.time[countyear].values)
path='SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year)
isFile = os.path.isfile(path)
if isFile:
print(" Ya existe "+ path)
continue
#print(ff,year)
Min,Max,q1,q50,q25,q75,q99=calculategetValuesColormap(nc2,year)
#print(Min,Max,q1,q50,q25,q75,q99)
print(year)
if q1<0.01:
q1=0.01
im1 = Image.open('./CapasJuntas_%s.png'%(Colormap))
im2 = Image.open('../2nc2image/img/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
back_im = im1.copy()
back_im.paste(im2, (0, 27))
final2 = Image.new("RGBA", back_im.size)
final2 = Image.alpha_composite(final2, back_im)
im3 = Image.open("./FondoRosa.png")
final2 = Image.alpha_composite(im3,final2)
back_im=final2
x=10
y=0
back_im=textdraw(back_im,year,x,y+2,(0, 0, 0))
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
x=500
y=0
back_im=textdraw(back_im,i,x,y+2,(0, 0, 0))
x=570
y=0
back_im=textdraw(back_im,j,x,y+2,(0, 0, 0))
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
x=230
y=197
back_im=textdraw(back_im,"<"+str(q1),x,y,(205, 205, 205),12,True)
#back_im.save('rocket_pillow_paste_pos.png', quality=95)
x1=470#91
back_im=textdraw(back_im,">"+str(q99),x1,y,(205, 205, 205),12,True)
x2=(x+x1)/2#53
back_im=textdraw(back_im,str(q50),x2,y,(205, 205, 205),12,True)
x3=(x2+x1)/2
back_im=textdraw(back_im,str(q75),x3,y,(205, 205, 205),12,True)
x4=(x+x2)/2
back_im=textdraw(back_im,str(q25),x4,y,(205, 205, 205),12,True)
back_im.save('SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year), quality=95)
ListY=[]
path="Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm"
isFile = os.path.isfile(path)
if isFile:
print(" Ya existe "+ path)
continue
for year in range(1986,2101):
ListY.append('./SinCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
movie_clip.write_videofile("./Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm")
#except:
# print(3432)
#break
#break
#break
ssp=("ssp245","ssp370","ssp585")
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM","ensemble5","ensemble8",)
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
for Colormap in Colormaps:
ProcessAllImage(ssp,model,Colormap)
import xarray as xr
from PIL import Image, ImageDraw, ImageFont
import os
# for e in os.walk('./SinCoralN'):
# pass
# for file in e[2]:
# #print(file)
# back_im = Image.open("./SinCoralN/"+file)
# final2 = Image.new("RGBA", back_im.size)
# #print(back_im.size,final2.size)
# im1 = Image.open("./3CoralesOrig.png")
# final2.paste(im1, (0, 27))
# #print(back_im.size,final2.size)
# final2 = Image.alpha_composite(back_im,final2,)
# final2.save("./ConcoralN/"+file, quality=95)
for e in os.walk('./SinCoralN'):
pass
for file in e[2]:
print(file)
isFile = os.path.isfile("./ConCoralN/"+file)
if isFile:
print(" Ya existe "+ "./ConCoralN/"+file)
continue
back_im = Image.open("./SinCoralN/"+file)
final2 = Image.new("RGBA", back_im.size)
#print(back_im.size,final2.size)
im1 = Image.open("./3CoralesOrig.png")
final2.paste(im1, (0, 27))
#print(back_im.size,final2.size)
final2 = Image.alpha_composite(back_im,final2,)
final2.save("./ConCoralN/"+file, quality=95)
import moviepy.video.io.ImageSequenceClip
Var="DHW"
ssp=("ssp245","ssp370","ssp585")
model=("BCC-CSM2-MR","CESM2","CanESM5","IPSL-CM6A-LR","MIROC6","NorESM2-MM","MRI-ESM2-0","EC-Earth3")
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
for Colormap in Colormaps:
for i in ssp:
for j in model:
ListY=[]
path="Videos/Animated_%s_%s_%s_%s_ON"%(Colormap,Var,i,j)+".webm"
isFile = os.path.isfile(path)
if isFile:
print(" Ya existe "+ path)
continue
for year in range(1986,2101):
ListY.append('./ConCoralN/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
print("%s_%s_%s_%s_ON"%(Colormap,Var,i,j))
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
movie_clip.write_videofile(path)

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.0 KiB

BIN
3image2video/FondoRosa.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

View File

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,73 @@
import xarray as xr
from PIL import Image, ImageDraw, ImageFont
import os
import moviepy.video.io.ImageSequenceClip
def calculategetValuesColormap(nc2,year):#*
""" Calculate values of colormap
Args:
nc (nc data): all layer of nc
year (int): year
Returns:
Min (float): Minimum value
Max (float): Maximun value
q1 (float): q1 value
q50 (float): q50 value
q25 (float): q25 value
q75 (float): q75 value
q99 (float): q99 value
"""
import numpy as np
try:
q1=np.around(np.nanquantile(nc2[int(year)-1987,:,:].values, 0.01),2)
Min=np.around(np.nanmin(nc2[int(year)-1987,:,:].values),2)
Max=np.around(np.nanmax(nc2[int(year)-1987,:,:].values),2)
q99=np.around(np.nanquantile(nc2[int(year)-1987,:,:].values, 0.99),2)
q50= np.around((q1+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.50),1)
q25= np.around((q1+q50)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.25),1)
q75= np.around((q50+q99)/2,2)#np.around(np.nanquantile(nc.DHW[int(year)-1987,:,:].values, 0.75),1)
if q99<10:
q99=8
q1=0
q25=2
q50=4
q75=6
except Exception:
pass
return Min,Max,q1,q50,q25,q75,q99
def textdraw(back_im,text,x,y,color,size=18,colormap=False):
draw = ImageDraw.Draw(back_im)
title_font = ImageFont.truetype('Roboto/Roboto-Regular.ttf', size)
textwidth, textheight = draw.textsize(str(text))
#print(textwidth, textheight,text)
if colormap:
x=x-textheight
draw.text((x, y), str(text),color,title_font)
return back_im
def ProcessAllImage(ssp,model,Colormap):
cc=0
Var="DHW"
for i in ssp:
for j in model:
ListY=[]
for year in range(1987,2101):
ListY.append('/home/mario/Documentos/Ocean/NetcdfToPng/SinCoral/%s_%s_%s_%s_DHW_%s.png'%(Colormap,Var,i,j,year))
movie_clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(ListY, 2)
movie_clip.write_videofile("Videos/Animated_%s_%s_%s_%s_OFF"%(Colormap,Var,i,j)+".webm")
#except:
# print(3432)
#break
#break
#break
ssp=("ssp245","ssp370","ssp585")
model=("BCC-CSM2-MR","CESM2","CanESM5","EC-Earth3","IPSL-CM6A-LR","MIROC6","MRI-ESM2-0","NorESM2-MM")
Colormaps=['Spectral','ocean',"coolwarm","RdYlBu"]
for Colormap in Colormaps:
ProcessAllImage(ssp,model,Colormap)