Compare commits

...

2 Commits

Author SHA1 Message Date
Mario Gil 415e798021 Dockerize full 2024-10-09 09:44:26 -05:00
Mario Gil f37e295ad9 Dockerized the app 2024-10-08 15:42:08 -05:00
6 changed files with 288 additions and 38 deletions

View File

@ -1,12 +1,17 @@
pip install llama-index
pip install llama-index-llms-groq
pip install llama-index-embeddings-huggingface
pip install llama-parse
pip install chromadb
pip install llama-index-vector-stores-chroma
pip install llama-index-embeddings-huggingface
pip install python-fasthtml
pip install grok
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
El sistema funciona en un docker
para generar:
docker build -t supertutor-app .
para ejecutar:
docker run -it -p 7884:7884 --rm fastapi-app
si tienes problemas con permisos:
sudo chmod 666 /var/run/docker.sock

21
dockerfile Normal file
View File

@ -0,0 +1,21 @@
# Usar una imagen base de Python
FROM python:3.11.10-bookworm
# Establecer el directorio de trabajo en el contenedor
WORKDIR /app
# Copiar el archivo requirements.txt y otros archivos necesarios
COPY requirements.txt ./
# Instalar las dependencias de Python
RUN pip install --no-cache-dir -r requirements.txt
# Copiar todo el código de la aplicación al contenedor
COPY . .
# Expone el puerto que usará Uvicorn
EXPOSE 7884
# Especificar el comando
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7884", "--reload"]

112
main.py
View File

@ -9,20 +9,23 @@ from llama_index.core import SummaryIndex
from llama_index.llms.groq import Groq as GroqLLamaIndex
from chromadb import PersistentClient
from llama_index.core import Settings
from llama_index.embeddings.huggingface_api import (
HuggingFaceInferenceAPIEmbedding,
)
#from llama_index.embeddings.huggingface_api import (
# HuggingFaceInferenceAPIEmbedding,
#)
import shutil
import chromadb
import os
import threading
import time
from llama_index.core.memory import ChatMemoryBuffer
import json
from llama_index.llms.ollama import Ollama
#from llama_index.llms.ollama import Ollama
from llama_index.core.base.response.schema import Response
from groq import Groq
import shutil
from fastapi import File as FileFast
from fastapi import UploadFile as UploadFileFast
from fastapi import Form as FormFast
#import shutil
pwd = os.getcwd()
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
configPath=os.path.join(os.getcwd(),relPath)
@ -50,8 +53,8 @@ Settings.llm = llm_localLlamma
gridlink = Link(rel="stylesheet", href="https://cdnjs.cloudflare.com/ajax/libs/flexboxgrid/6.3.1/flexboxgrid.min.css", type="text/css")
app= FastHTML(hdrs=(picolink, gridlink))
colorpico=Link(rel="stylesheet", href="https://cdn.jsdelivr.net/npm/@picocss/pico@2/css/pico.colors.min.css")
app= FastHTML(hdrs=(picolink, gridlink,colorpico))
@ -78,9 +81,9 @@ def checkInfoSources(user:str):
subdir = [Option(file.name,value="static/"+user+"/"+file.name) for file in files if (file.is_dir() and file.name!="chroma_db") ]
userdata=user
print("Cambio",userdata)
return Form(
H3("Grupos de archivos",cls="col-xs-3"),
H3("Grupo de archivos",cls="col-xs-3"),
Select(
*subdir,name="data",cls="col-xs-3"),
Input(id="name-db", name="collection", placeholder="Enter a collection name",cls="col-xs-4"),
@ -163,7 +166,7 @@ def loadCollection(data:str):
def queryPrompt(question:str):
#index=load_create_db(collection="my_collection")
query_engine = index.as_query_engine(similarity_top_k=15,vector_store_query_mode="default",response_mode="tree_summarize")
query_engine = index.as_query_engine(similarity_top_k=5,vector_store_query_mode="default",response_mode="tree_summarize")
summary_prompt = (
"Por favor, genera un resumen completo y detallado del material dado. "
"Incluye los principales temas, argumentos y conclusiones. "
@ -191,7 +194,7 @@ def queryPrompt(question:str):
response2 = query_engine.query(tematic_prompt)
response3 = query_engine.query(issues_prompt)
response4 = query_engine.query(Question_prompt)
Output="<H1>Summary</H1>"+str(response)+"<H1>Tematic</H1>"+str(response2)+"<H1>Issues</H1>"+str(response3)+"<H1>Questions</H1>"+str(response4)
Output="<H1>Resumen</H1>"+str(response)+"<H1>Tematica</H1>"+str(response2)+"<H1>Problemas</H1>"+str(response3)+"<H1>Preguntas</H1>"+str(response4)
return Output
@ -238,10 +241,6 @@ Evaluate the coherence and accuracy of previous response to respond %s in this e
Verificate if previous context is related to the previous response, if not, say that you do not have information about that issue
The format of output is a json with keys 'coherencia', 'exactitud', 'relacion_con_el_contexto' and 'comentario' .
'coherencia', 'exactitud', 'relacion_con_el_contexto' are numeric variables with max value is 10"""%(response,ContextNodes,message)
print(chat_engine.__dict__)
chat_completion = client.chat.completions.create(
#
@ -293,7 +292,7 @@ The format of output is a json with keys 'coherencia', 'exactitud', 'relacion_co
)
return P(message),P(response),P(chat_completion.choices[0].message.content)
return H6(message),P(response,cls="pico-color-pink-500"),P(chat_completion.choices[0].message.content,cls="pico-color-pink-500")
@app.get("/SummarySources")
def SummarySources():
@ -302,7 +301,7 @@ def SummarySources():
return Form("Este es muy caro para documentos grandes y tarda mucho",
Select(
*subdir,name="data"),
Input( name="query", placeholder="Enter a query"),
Input( name="query", placeholder="Dar una pregunta"),
Button("Submit",type="submit"), hx_post="/SummaryMake",hx_swap="innerHTML",hx_target="#summaryR" )
@app.post("/SummaryMake")
@ -374,18 +373,18 @@ def home():
Div(Div(id="options",hx_target="this",hx_swap="outerHTML",hx_get="/listmodelactives",hx_trigger="click from:#buttonMenuuser delay:3s"),cls="col-xs-12"),
Div(Div(id="Infomodel"),cls="col-xs-12"),
#Div("Resumen",Div(id="summary",hx_target="this",hx_swap="outerHTML",hx_get="/SummarySources",hx_trigger="click from:#buttonMenuuser"),Div(id="summaryR")),
Div(
Div(H3("Chat para preguntarle al material de estudios "),
Div(
Form(
Input(id="question", name="message", placeholder="Enter a message"),
Input(id="question", name="message", placeholder="Dar una pregunta"),
Button("Submit",type="submit"), hx_post="/chatData",hx_swap="afterend",hx_target="#questionR" ),
Div(id="questionR")
,id="questions"),
cls="col-xs-6"),
Div(
Div(H3("Este genera informacion general del material, pero es intensivo en unso del api. No USAR."),
Div(
Form(
Input(id="query", name="question", placeholder="Enter a query"),
Input(id="query", name="question", placeholder="Dar una pregunta"),
Button("Submit",type="submit"), hx_post="/queryprompt",hx_swap="innerHTML",hx_target="#queryR" ),
Div(id="queryR"),
id="query"),
@ -394,14 +393,71 @@ def home():
))
return page
# @app.post("/upload")
# def upload(data: UploadFile = File(...),user : str = Form(...), dir: str = Form(...)):
# filename="static/"+user+dir+data.filename
@app.get("/fileup")
def fileup():
return Div(
P('Upload data Super tutor'),
Div(H2("Subir Archivos"),Form(
Input(type='file', name='file',cls="col-xs-3"),
Input( name='dir',placeholder="Enter a directory",cls="col-xs-2"),
Input( name='user',placeholder="Enter a user",cls="col-xs-2"),
Button('Upload', type='submit',cls="col-xs-4"),
hx_post="/upload",
hx_target="#info",
hx_swap="innerHTML",
enctype="multipart/form-data",
),cls="col-xs-12"),
Div(H2("Crear Usuario"),Form(
Input( name='user',placeholder="Enter a user",cls="col-xs-7"),
Button('Upload', type='submit',cls="col-xs-5"),
hx_post="/createuser",
hx_target="#info",
hx_swap="innerHTML",
enctype="multipart/form-data",
),cls="col-xs-12"),
Div(H2("Crear grupo de Archivos"),Form(
Input( name='dir',placeholder="Enter a directory",cls="col-xs-4"),
Input( name='user',placeholder="Enter a user",cls="col-xs-3"),
Button('Upload', type='submit',cls="col-xs-5"),
hx_post="/creategroup",
hx_target="#info",
hx_swap="innerHTML",
enctype="multipart/form-data",
),cls="col-xs-12"),
Div(id="info")
# with open(f"{filename}", "wb") as buffer:
# shutil.copyfileobj(data.file, buffer)
# app.mount("/static", StaticFiles(directory="static"), name="static")
)
@app.post("/upload")
def upload(file: UploadFile,dir : str = Form(...),user : str = Form(...)):
filenameB="static/"+user+"/"+dir+"/"+file.filename
pathB="static/"+user+"/"+dir
if not os.path.exists(pathB):
os.makedirs(pathB)
if not os.path.exists(filenameB):
with open(f"{filenameB}", "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return P("Se ha subido %s"%(filenameB))
@app.post("/createuser")
def createuser(user : str = Form(...)):
pathB="static/"+user
if not os.path.exists(pathB):
os.makedirs(pathB)
return P("Se ha creado %s"%(pathB))
@app.post("/creategroup")
def createuser(user : str = Form(...),dir : str = Form(...)):
pathB="static/"+user+"/"+dir
if not os.path.exists(pathB):
os.makedirs(pathB)
return P("Se ha creado %s"%(pathB))
app.mount("/static", StaticFiles(directory="static"), name="static")

146
requirements.txt Normal file
View File

@ -0,0 +1,146 @@
aiohappyeyeballs==2.4.3
aiohttp==3.10.9
aiosignal==1.3.1
annotated-types==0.7.0
anyio==4.6.0
asgiref==3.8.1
attrs==24.2.0
backoff==2.2.1
bcrypt==4.2.0
beautifulsoup4==4.12.3
build==1.2.2.post1
cachetools==5.5.0
certifi==2024.8.30
charset-normalizer==3.3.2
chroma-hnswlib==0.7.6
chromadb==0.5.7
click==8.1.7
coloredlogs==15.0.1
dataclasses-json==0.6.7
Deprecated==1.2.14
dirtyjson==1.0.8
distro==1.9.0
durationpy==0.9
fastapi==0.115.0
fastcore==1.7.11
fastlite==0.0.11
filelock==3.16.1
flatbuffers==24.3.25
frozenlist==1.4.1
fsspec==2024.9.0
google-auth==2.35.0
googleapis-common-protos==1.65.0
greenlet==3.1.1
groq==0.11.0
grpcio==1.66.2
h11==0.14.0
httpcore==1.0.6
httptools==0.6.1
httpx==0.27.2
huggingface-hub==0.25.1
humanfriendly==10.0
idna==3.10
importlib_metadata==8.4.0
importlib_resources==6.4.5
itsdangerous==2.2.0
jiter==0.6.1
joblib==1.4.2
kubernetes==31.0.0
llama-cloud==0.1.2
llama-index==0.11.13
llama-index-agent-openai==0.3.4
llama-index-cli==0.3.1
llama-index-core==0.11.16
llama-index-embeddings-huggingface==0.3.1
llama-index-embeddings-openai==0.2.5
llama-index-indices-managed-llama-cloud==0.4.0
llama-index-legacy==0.9.48.post3
llama-index-llms-openai==0.2.12
llama-index-llms-groq==0.2.0
llama-index-multi-modal-llms-openai==0.2.2
llama-index-program-openai==0.2.0
llama-index-question-gen-openai==0.2.0
llama-index-readers-file==0.2.2
llama-index-readers-llama-parse==0.3.0
llama-index-vector-stores-chroma==0.2.0
llama-parse==0.5.7
markdown-it-py==3.0.0
marshmallow==3.22.0
mdurl==0.1.2
mmh3==5.0.1
monotonic==1.6
mpmath==1.3.0
multidict==6.1.0
mypy-extensions==1.0.0
nest-asyncio==1.6.0
networkx==3.3
nltk==3.9.1
numpy==1.26.4
oauthlib==3.2.2
onnxruntime==1.19.2
openai==1.51.1
opentelemetry-api==1.27.0
opentelemetry-exporter-otlp-proto-common==1.27.0
opentelemetry-exporter-otlp-proto-grpc==1.27.0
opentelemetry-instrumentation==0.48b0
opentelemetry-instrumentation-asgi==0.48b0
opentelemetry-instrumentation-fastapi==0.48b0
opentelemetry-proto==1.27.0
opentelemetry-sdk==1.27.0
opentelemetry-semantic-conventions==0.48b0
opentelemetry-util-http==0.48b0
orjson==3.10.7
overrides==7.7.0
packaging==24.1
pandas==2.2.3
pillow==10.4.0
posthog==3.7.0
propcache==0.2.0
protobuf==4.25.5
pyasn1==0.6.1
pyasn1_modules==0.4.1
pydantic==2.9.2
pydantic_core==2.23.4
Pygments==2.18.0
pypdf==4.3.1
PyPika==0.48.9
pyproject_hooks==1.2.0
pysqlite3-binary==0.5.3.post1
pysqlite3-binary==0.5.3.post1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-fasthtml==0.6.7
python-multipart==0.0.12
pytz==2024.2
PyYAML==6.0.2
regex==2024.9.11
requests==2.32.3
requests-oauthlib==2.0.0
rich==13.9.2
rsa==4.9
shellingham==1.5.4
six==1.16.0
sniffio==1.3.1
soupsieve==2.6
SQLAlchemy==2.0.35
sqlite-minutils==3.37.0.post3
starlette==0.38.6
striprtf==0.0.26
sympy==1.13.3
tenacity==8.5.0
tiktoken==0.8.0
tokenizers==0.20.0
tqdm==4.66.5
typer==0.12.5
typing-inspect==0.9.0
typing_extensions==4.12.2
tzdata==2024.2
urllib3==2.2.3
uvicorn==0.31.0
uvloop==0.20.0
watchfiles==0.24.0
websocket-client==1.8.0
websockets==13.1
wrapt==1.16.0
yarl==1.14.0
zipp==3.20.2

1
run.sh Normal file
View File

@ -0,0 +1 @@
docker run -it -p 7884:7884 --rm fastapi-app

View File

@ -0,0 +1,21 @@
# Usar una imagen base de Python
FROM python:3.11.10-bookworm
# Establecer el directorio de trabajo en el contenedor
WORKDIR /app
# Copiar el archivo requirements.txt y otros archivos necesarios
COPY requirements.txt ./
# Instalar las dependencias de Python
RUN pip install --no-cache-dir -r requirements.txt
# Copiar todo el código de la aplicación al contenedor
COPY . .
# Expone el puerto que usará Uvicorn
EXPOSE 7884
# Especificar el comando
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7884", "--reload"]