38 lines
1.0 KiB
Python
38 lines
1.0 KiB
Python
from deepface import DeepFace
|
|
from fastapi import FastAPI
|
|
from pydantic import BaseModel
|
|
from typing import Optional
|
|
# objs = DeepFace.analyze(img_path = "data/1.jpg",
|
|
# actions = ['age', 'gender', 'race', 'emotion']
|
|
# )
|
|
# print(objs)
|
|
# objs = DeepFace.analyze(img_path = "data/2.jpg",
|
|
# actions = ['age', 'gender', 'race', 'emotion']
|
|
# )
|
|
# print(objs)
|
|
# objs = DeepFace.analyze(img_path = "data/3.jpg",
|
|
# actions = ['age', 'gender', 'race', 'emotion']
|
|
# )
|
|
# print(objs)
|
|
# objs = DeepFace.analyze(img_path = "data/4.jpg",
|
|
# actions = ['age', 'gender', 'race', 'emotion']
|
|
# )
|
|
# print(objs)
|
|
|
|
# print(objs)
|
|
|
|
class Response(BaseModel):
|
|
path: str
|
|
actions : Optional[list] = ['age', 'gender', 'race', 'emotion']
|
|
app = FastAPI()
|
|
@app.get("/")
|
|
def read_main():
|
|
return {"message": "This is your main app"}
|
|
@app.post("/faces/")
|
|
def calculate_api(response: Response):
|
|
path = response.path
|
|
actions = response.actions
|
|
objs = DeepFace.analyze(img_path =path,
|
|
actions = actions)
|
|
return objs
|