LLm2Node/FindinDB.py

97 lines
3.1 KiB
Python

import gradio as gr
from faiss import write_index, read_index
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader
from langchain.document_loaders import UnstructuredURLLoader
from langchain.document_loaders.csv_loader import CSVLoader
from langchain import LLMChain
from langchain.llms import GPT4All
from langchain.embeddings import GPT4AllEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackManager
from langchain.document_loaders import DataFrameLoader
import pandas as pd
import sqlite3
def loadModels():
#model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
callback_manager = BaseCallbackManager([StreamingStdOutCallbackHandler()])
llm = GPT4All(model="orca-mini-3b.ggmlv3.q4_0.bin",temp=0.1,streaming=True)#callback_manager=callback_manager, verbose=True,repeat_last_n=0
embeddings = GPT4AllEmbeddings()
return llm, embeddings
llm,emb=loadModels()
con = sqlite3.connect("motor.sqlite")
copies_df = pd.read_sql_query("SELECT * from copies", con)
copiesT = copies_df[copies_df.copy_start =="T"]
copiesT=copiesT[["copy_message","id","name"]]
data = copiesT
B=DataFrameLoader(data,page_content_column="copy_message")
B2=DataFrameLoader(data,page_content_column="name")
documents=B.load()
documents2=B2.load()
try:
db=FAISS.load_local(folder_path="Copies",embeddings=emb)
except:
db = FAISS.from_documents(documents, emb)
FAISS.save_local(db,folder_path="Copies")
try:
db2=FAISS.load_local(folder_path="names",embeddings=emb)
except:
db2 = FAISS.from_documents(documents2, emb)
FAISS.save_local(db2,folder_path="names")
def FinderDb(query,dbs):
Sal = dbs.similarity_search_with_score(query,3)
page_content=[]
id=[]
d=[]
for output in Sal:
page_content.append(output[0].page_content)
id.append(output[0].metadata["id"])
d.append(output[1])
espacio="""
########################
"""
page_content=espacio.join(page_content)
return page_content,d,id
def QARequest(Pregunta):
query = Pregunta
page_content,d,id=FinderDb(query,db)
page_content2,d2,id2=FinderDb(query,db2)
return page_content,d,id,page_content2,d2,id2
with gr.Blocks() as demo:
Pregunta = gr.Textbox(label="Pregunta")
#Respuesta = gr.Textbox(label="Respuesta")
#id = gr.Textbox(label="id")
#metrica=gr.Textbox(label="metrica")
Respuesta2 = gr.Textbox(label="Respuesta2")
id2 = gr.Textbox(label="id2")
metrica2=gr.Textbox(label="metrica2")
Enviar_btn = gr.Button("Responder")
Enviar_btn.click(fn=QARequest, inputs=Pregunta, outputs=[Respuesta2,metrica2,id2], api_name="Respuestas") # Respuesta,metrica,id,
demo.launch() #