LLm2Node/FindinDB.py

159 lines
5.6 KiB
Python

import gradio as gr
from faiss import write_index, read_index
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders.recursive_url_loader import RecursiveUrlLoader
from langchain.document_loaders import UnstructuredURLLoader
from langchain.document_loaders.csv_loader import CSVLoader
from langchain import LLMChain
from langchain.llms import GPT4All
from langchain.embeddings import GPT4AllEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.callbacks.base import BaseCallbackManager
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
import pandas as pd
import sqlite3
from sentence_transformers import SentenceTransformer
from fastapi import FastAPI
#from cleantext import clean
import re
model_name = 'hiiamsid/sentence_similarity_spanish_es'
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
CUSTOM_PATH = "/angela"
app = FastAPI()
@app.get("/")
def read_main():
return {"message": "This is your main app"}
def loadModels():
#model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
callback_manager = BaseCallbackManager([StreamingStdOutCallbackHandler()])
llm = GPT4All(model="orca-mini-3b.ggmlv3.q4_0.bin",temp=0.1,streaming=True)#callback_manager=callback_manager, verbose=True,repeat_last_n=0
embeddings = GPT4AllEmbeddings()
return llm, embeddings
def loadCopysAndData(pathsqlite="motor.sqlite"):
con = sqlite3.connect(pathsqlite)
copies_df = pd.read_sql_query("SELECT * from copies", con)
copiesT = copies_df[copies_df.copy_start =="T"]
copiesT=copiesT[["copy_message","id","name"]]
data = copiesT
B=DataFrameLoader(data,page_content_column="copy_message")
B2=DataFrameLoader(data,page_content_column="name")
documents=B.load()
documents2=B2.load()
return documents,documents2
def makeFaissdb(documents,folder_path,embedding):
try:
db=FAISS.load_local(folder_path=folder_path,embeddings=embedding)
except:
db = FAISS.from_documents(documents, embedding)
FAISS.save_local(db,folder_path=folder_path)
return db
llm,emb=loadModels()
documents,documents2=loadCopysAndData()
db=makeFaissdb(documents,"Copies",emb)
db2=makeFaissdb(documents2,"names",emb)
db3=makeFaissdb(documents2,"nameshf",hf)
def FinderDbs(query,dbs,filtred=False,th=1.2):
AllData={}
for dbt in dbs:
Sal = dbt.similarity_search_with_score(query,4)
for output in Sal:
if output[0].metadata["id"] in AllData.keys():
AllData[output[0].metadata["id"]]["d"]=min([AllData[output[0].metadata["id"]]["d"]-0.1,output[1]-0.1])
else:
AllData[output[0].metadata["id"]]={"d":output[1],"page_content":output[0].page_content}
#for item in AllData.items():
# print(item)
if filtred:
filtredData={}
for row in AllData.keys():
if AllData[row]["d"]<1.2:
filtredData[row]=AllData[row]
filtredData=dict(sorted(filtredData.items(), key=lambda item: item[1]["d"]))
return filtredData,filtredData.keys()
else:
AllData=dict(sorted(AllData.items(), key=lambda item: item[1]["d"]))
return AllData,AllData.keys()
def QARequest(Pregunta,filtred=False):
query = Pregunta
AllData=FinderDbs(query,[db,db2],filtred)
if AllData:
import markdown
AllData = list(AllData)
#lista = "<div style='border-style = solid;border-width:1px;border-radius:10px'>"
lista = ""
for k,i in enumerate(AllData[0].items()):
titulo = f"<div style='border-style = solid;border-width:1px;border-radius:10px;margin:14px;padding:14px'><h2>Respuesta {k+1}</h2>"
to_append = markdown.markdown(i[1]['page_content'])
lista = lista + titulo + to_append + '</div>'
#lista.append('<br>')
#lista = lista + '</div>'
AllData[0] = lista
return AllData
with gr.Blocks() as demo:
gr.Image("logo.jpg",height=100)
gr.Markdown("Esta es la busqueda que hace el usuario")
Pregunta = gr.Textbox(label="Pregunta")
#Pregunta = re.sub(r"(@\[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|^rt|http.+?", "", Pregunta)
#Pregunta=Pregunta.strip().lower()
filtred=gr.Checkbox(label="filtrado")
gr.Markdown("Respuestas para orca desde los copys")
Respuesta = gr.Textbox(label="Respuesta")
id = gr.Textbox(label="id")
# metrica=gr.Textbox(label="metrica")
# gr.Markdown("Respuestas para orca desde los names")
# Respuesta2 = gr.Textbox(label="Respuesta2")
# id2 = gr.Textbox(label="id2")
# metrica2=gr.Textbox(label="metrica2")
# gr.Markdown("Respuestas para hf desde los names")
# Respuesta3 = gr.Textbox(label="Respuesta3")
# id3 = gr.Textbox(label="id3")
# metrica3=gr.Textbox(label="metrica3")
Enviar_btn = gr.Button("Responder")
Enviar_btn.click(fn=QARequest, inputs=[Pregunta,filtred], outputs=[gr.HTML(Respuesta),id], api_name="api_angela") #
#demo.launch(root_path="angela") #
gradio_app = gr.routes.App.create_app(demo)
app.mount(CUSTOM_PATH, gradio_app)
#app = demo.mount_gradio_app(app, io, path=CUSTOM_PATH)