from sentence_transformers import SentenceTransformer # Preguntas y respuestas especializado en eso "multi-qa-mpnet-base-dot-v1" # uno de uso gereal el de mejor desempeƱo all-mpnet-base-v2 # el mas rapido "paraphrase-MiniLM-L3-v2" y "all-MiniLM-L6-v2" # muy rappudo y muy acertado "all-MiniLM-L12-v2" #models=["all-MiniLM-L12-v2","paraphrase-MiniLM-L3-v2" , "all-MiniLM-L6-v2", from pathlib import Path import json #"paraphrase-multilingual-mpnet-base-v2",'hackathon-pln-es/paraphrase-spanish-distilroberta' nameModel="Modelo_embedding_CIDITEL" def extractConfig(nameModel="Modelo_embedding_Mexico_Puebla",relPath="./conf/experiment_config.json",dataOut="train_dataset_pos"): configPath=Path(relPath) with open(configPath, 'r', encoding='utf-8') as file: config = json.load(file)[nameModel] if dataOut is list and len(dataOut)==2: Output= config[dataOut[0]][dataOut[1]] else: Output= config[dataOut] return Output baseModel=extractConfig(nameModel=nameModel,dataOut="base_model") models=[baseModel] for model in models: modelST = SentenceTransformer(model) # Define the path where you want to save the model save_path = './embeddings/%s/model'%(model) print(save_path) # Save the model modelST.save(save_path)