add logo plus, filtred and refactoring
This commit is contained in:
parent
131c5e375c
commit
ea83ea6a3e
136
FindinDB.py
136
FindinDB.py
|
@ -17,80 +17,114 @@ from langchain.embeddings import GPT4AllEmbeddings
|
|||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.document_loaders import DataFrameLoader
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
import pandas as pd
|
||||
import sqlite3
|
||||
from sentence_transformers import SentenceTransformer
|
||||
#from cleantext import clean
|
||||
import re
|
||||
model_name = 'hiiamsid/sentence_similarity_spanish_es'
|
||||
model_kwargs = {'device': 'cpu'}
|
||||
encode_kwargs = {'normalize_embeddings': True}
|
||||
hf = HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=model_kwargs,
|
||||
encode_kwargs=encode_kwargs
|
||||
)
|
||||
|
||||
|
||||
def loadModels():
|
||||
#model = GPT4All("orca-mini-3b.ggmlv3.q4_0.bin")
|
||||
callback_manager = BaseCallbackManager([StreamingStdOutCallbackHandler()])
|
||||
llm = GPT4All(model="orca-mini-3b.ggmlv3.q4_0.bin",temp=0.1,streaming=True)#callback_manager=callback_manager, verbose=True,repeat_last_n=0
|
||||
embeddings = GPT4AllEmbeddings()
|
||||
return llm, embeddings
|
||||
|
||||
|
||||
def loadCopysAndData(pathsqlite="motor.sqlite"):
|
||||
con = sqlite3.connect(pathsqlite)
|
||||
copies_df = pd.read_sql_query("SELECT * from copies", con)
|
||||
copiesT = copies_df[copies_df.copy_start =="T"]
|
||||
copiesT=copiesT[["copy_message","id","name"]]
|
||||
data = copiesT
|
||||
B=DataFrameLoader(data,page_content_column="copy_message")
|
||||
B2=DataFrameLoader(data,page_content_column="name")
|
||||
documents=B.load()
|
||||
documents2=B2.load()
|
||||
return documents,documents2
|
||||
|
||||
def makeFaissdb(documents,folder_path,embedding):
|
||||
try:
|
||||
db=FAISS.load_local(folder_path=folder_path,embeddings=embedding)
|
||||
|
||||
except:
|
||||
db = FAISS.from_documents(documents, embedding)
|
||||
FAISS.save_local(db,folder_path=folder_path)
|
||||
return db
|
||||
|
||||
llm,emb=loadModels()
|
||||
documents,documents2=loadCopysAndData()
|
||||
|
||||
db=makeFaissdb(documents,"Copies",emb)
|
||||
db2=makeFaissdb(documents2,"names",emb)
|
||||
db3=makeFaissdb(documents2,"nameshf",hf)
|
||||
|
||||
con = sqlite3.connect("motor.sqlite")
|
||||
copies_df = pd.read_sql_query("SELECT * from copies", con)
|
||||
copiesT = copies_df[copies_df.copy_start =="T"]
|
||||
copiesT=copiesT[["copy_message","id","name"]]
|
||||
data = copiesT
|
||||
B=DataFrameLoader(data,page_content_column="copy_message")
|
||||
B2=DataFrameLoader(data,page_content_column="name")
|
||||
documents=B.load()
|
||||
documents2=B2.load()
|
||||
|
||||
try:
|
||||
db=FAISS.load_local(folder_path="Copies",embeddings=emb)
|
||||
|
||||
except:
|
||||
db = FAISS.from_documents(documents, emb)
|
||||
FAISS.save_local(db,folder_path="Copies")
|
||||
|
||||
try:
|
||||
db2=FAISS.load_local(folder_path="names",embeddings=emb)
|
||||
|
||||
except:
|
||||
db2 = FAISS.from_documents(documents2, emb)
|
||||
FAISS.save_local(db2,folder_path="names")
|
||||
|
||||
def FinderDb(query,dbs):
|
||||
Sal = dbs.similarity_search_with_score(query,3)
|
||||
page_content=[]
|
||||
id=[]
|
||||
d=[]
|
||||
for output in Sal:
|
||||
page_content.append(output[0].page_content)
|
||||
id.append(output[0].metadata["id"])
|
||||
d.append(output[1])
|
||||
espacio="""
|
||||
|
||||
|
||||
########################
|
||||
def FinderDbs(query,dbs,filtred=False,th=1.2):
|
||||
AllData={}
|
||||
for dbt in dbs:
|
||||
Sal = dbt.similarity_search_with_score(query,4)
|
||||
for output in Sal:
|
||||
if output[0].metadata["id"] in AllData.keys():
|
||||
AllData[output[0].metadata["id"]]["d"]=min([AllData[output[0].metadata["id"]]["d"]-0.1,output[1]-0.1])
|
||||
else:
|
||||
AllData[output[0].metadata["id"]]={"d":output[1],"page_content":output[0].page_content}
|
||||
for item in AllData.items():
|
||||
print(item)
|
||||
|
||||
if filtred:
|
||||
filtredData={}
|
||||
for row in AllData.keys():
|
||||
if AllData[row]["d"]<1.2:
|
||||
filtredData[row]=AllData[row]
|
||||
filtredData=dict(sorted(filtredData.items(), key=lambda item: item[1]["d"]))
|
||||
return filtredData,filtredData.keys()
|
||||
|
||||
|
||||
"""
|
||||
page_content=espacio.join(page_content)
|
||||
return page_content,d,id
|
||||
else:
|
||||
AllData=dict(sorted(AllData.items(), key=lambda item: item[1]["d"]))
|
||||
return AllData,AllData.keys()
|
||||
|
||||
def QARequest(Pregunta):
|
||||
def QARequest(Pregunta,filtred=False):
|
||||
query = Pregunta
|
||||
page_content,d,id=FinderDb(query,db)
|
||||
page_content2,d2,id2=FinderDb(query,db2)
|
||||
return page_content,d,id,page_content2,d2,id2
|
||||
AllData=FinderDbs(query,[db,db2],filtred)
|
||||
return AllData
|
||||
|
||||
|
||||
|
||||
with gr.Blocks() as demo:
|
||||
gr.Image("logo.jpg",height=100)
|
||||
gr.Markdown("Esta es la busqueda que hace el usuario")
|
||||
Pregunta = gr.Textbox(label="Pregunta")
|
||||
#Respuesta = gr.Textbox(label="Respuesta")
|
||||
#id = gr.Textbox(label="id")
|
||||
#metrica=gr.Textbox(label="metrica")
|
||||
Respuesta2 = gr.Textbox(label="Respuesta2")
|
||||
id2 = gr.Textbox(label="id2")
|
||||
metrica2=gr.Textbox(label="metrica2")
|
||||
#Pregunta = re.sub(r"(@\[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|^rt|http.+?", "", Pregunta)
|
||||
#Pregunta=Pregunta.strip().lower()
|
||||
|
||||
filtred=gr.Checkbox(label="filtrado")
|
||||
|
||||
gr.Markdown("Respuestas para orca desde los copys")
|
||||
Respuesta = gr.Textbox(label="Respuesta")
|
||||
id = gr.Textbox(label="id")
|
||||
# metrica=gr.Textbox(label="metrica")
|
||||
# gr.Markdown("Respuestas para orca desde los names")
|
||||
# Respuesta2 = gr.Textbox(label="Respuesta2")
|
||||
# id2 = gr.Textbox(label="id2")
|
||||
# metrica2=gr.Textbox(label="metrica2")
|
||||
# gr.Markdown("Respuestas para hf desde los names")
|
||||
# Respuesta3 = gr.Textbox(label="Respuesta3")
|
||||
# id3 = gr.Textbox(label="id3")
|
||||
# metrica3=gr.Textbox(label="metrica3")
|
||||
Enviar_btn = gr.Button("Responder")
|
||||
|
||||
Enviar_btn.click(fn=QARequest, inputs=Pregunta, outputs=[Respuesta2,metrica2,id2], api_name="Respuestas") # Respuesta,metrica,id,
|
||||
Enviar_btn.click(fn=QARequest, inputs=[Pregunta,filtred], outputs=[Respuesta,id], api_name="Angela") #
|
||||
|
||||
demo.launch() #
|
||||
|
||||
|
|
Loading…
Reference in New Issue