diff --git a/main.py b/main.py index e67e6f2..667d193 100644 --- a/main.py +++ b/main.py @@ -24,8 +24,8 @@ from nltk.corpus import stopwords from typing import Optional #from cleantext import clean import re -model="embeddings/all-mpnet-base-v2" -entrenamiento="V0.0" +model="FTv1/all-mpnet-base-v2" +entrenamiento="V1.0" @@ -93,7 +93,7 @@ def remove_unwanted(document,stopOK=False,punctuationOK=False,xtrasOK=False, emo return document.strip().lower() def loadmodelEmb(model_name = "embeddings/all-MiniLM-L6-v2",model_kwargs = {'device': 'cpu'}): - st = SentenceTransformer(model_name) + st = SentenceTransformer(model_name,device='cpu') return st @@ -138,7 +138,7 @@ def FinderDbs(query,dbs,filtred=1.2): Sal = dbt.similarity_search_with_score(query,4) for output in Sal: if output[0].metadata["id"] in AllData.keys(): - AllData[output[0].metadata["id"]]["d"]=min([AllData[output[0].metadata["id"]]["d"]-0.1,output[1]-0.1]) + AllData[output[0].metadata["id"]]["d"]=min([AllData[output[0].metadata["id"]]["d"],output[1]]) else: AllData[output[0].metadata["id"]]={"d":output[1],"page_content":output[0].page_content} #for item in AllData.items(): @@ -177,7 +177,7 @@ def calculate_api(response: Response): except: filtred = -9.0 - AllData=FinderDbs(query,[db2],filtred) + AllData=FinderDbs(query,[db2,db],filtred) versionL="_".join([model,entrenamiento]) if AllData: AllData = list(AllData)