106 lines
3.6 KiB
Python
106 lines
3.6 KiB
Python
from taipy.gui import Gui
|
|
import hashlib
|
|
import json
|
|
import codecs, os
|
|
from taipy.gui import Html
|
|
import pandas as pd
|
|
import requests
|
|
import statistics
|
|
from databases import db
|
|
pwd = os.getcwd()
|
|
|
|
HTML = os.path.join(pwd,"html", "index.html")
|
|
file_read = codecs.open(HTML, "r", "utf-8")
|
|
index = file_read.read()
|
|
html_page_index = Html(index)
|
|
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
|
|
configPath=os.path.join(os.getcwd(),relPath)
|
|
with open(configPath, 'r', encoding='utf-8') as file:
|
|
config = json.load(file)[nameModel]
|
|
Output= config[dataOut]
|
|
return Output
|
|
mode_list=extractConfig(nameModel="SystemData",dataOut="mode_list")
|
|
def getmetricvoice(model):
|
|
rows = db(db.analitic_voice.model==model).select()
|
|
rows_list = rows.as_list()
|
|
data=pd.DataFrame(rows_list)
|
|
durationL=list()
|
|
for i in rows_list:
|
|
durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
|
|
duration=statistics.mean(durationL)
|
|
time=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['time'].values[0]
|
|
similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
|
|
similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
|
|
efectivetime=time/duration
|
|
return ({"model":model,"duration":duration,"time":time,"similarity":similarity,"similaritypartial":similaritypartial,"efectivetime":efectivetime})
|
|
|
|
def html_getmetricvoice():
|
|
models=list()
|
|
for row in db().select(db.analitic_voice.model, distinct=True):
|
|
models.append(row.model)
|
|
data={}
|
|
for model in models:
|
|
data[model]=getmetricvoice(model)
|
|
data=pd.DataFrame(data).T
|
|
datafiles={}
|
|
for row in db().select(db.analitic_voice.ALL):
|
|
datafiles[row.id]=row.as_dict()
|
|
datafiles=pd.DataFrame(datafiles).T
|
|
html="""
|
|
<taipy:table>{data_voice}</taipy:table>
|
|
<taipy:table filter=True>{data_files_voice}</taipy:table>
|
|
"""
|
|
|
|
return html,data,datafiles
|
|
html_page_getmetricsvoice,data_voice,data_files_voices=html_getmetricvoice()
|
|
|
|
mode="voice"
|
|
modetypedata="audio"
|
|
file="id2"
|
|
def changemenu(mode):
|
|
if mode_list[mode]=="audio":
|
|
pathori="example/audio"
|
|
if mode_list[mode]=="factura":
|
|
pathori="example/factura"
|
|
if mode_list[mode]=="texto":
|
|
pathori="example/texto"
|
|
seltypedata=mode_list[mode]
|
|
dir_list = os.listdir(pathori)
|
|
|
|
return pathori,seltypedata,dir_list
|
|
|
|
|
|
def trustedallhtml(mode):
|
|
pathori,seltypedata,dir_list=changemenu(mode)
|
|
|
|
|
|
textmode=""
|
|
for modeused in mode_list.keys():
|
|
textmode=textmode+"('%s','%s'),"%(modeused,modeused)
|
|
html="""<taipy:selector lov="{[%s]}" dropdown True on_change=changemenu>{sel}</taipy:selector>"""%(textmode)
|
|
Sal=""
|
|
for i in dir_list:
|
|
temp="""('%s', '%s'),"""%(str(pwd+"/"+pathori+"/"+i),str(i))
|
|
Sal=Sal+temp
|
|
html2="""<taipy:selector lov="{[%s]}" dropdown True >{sel2}</taipy:selector>"""%(Sal)
|
|
return html+html2
|
|
|
|
html_page_trustedall = Html(trustedallhtml(mode))
|
|
#print(sel,sel2,seltypedata)
|
|
HTML = os.path.join(pwd,"html", "index.html")
|
|
file_read = codecs.open(HTML, "r", "utf-8")
|
|
index = file_read.read()
|
|
html_page_index = Html(index)
|
|
|
|
data=pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
|
|
|
pages = {
|
|
"/": html_page_index ,
|
|
"getmetricsvoice": Html(html_page_getmetricsvoice),
|
|
"trustedall":html_page_trustedall
|
|
}
|
|
|
|
app = Gui(pages=pages)
|
|
if __name__=="__main__":
|
|
app.run(use_reloader=True,port=7882, change_delay=1600)#state.imageActive2,
|