from taipy.gui import Gui
import hashlib
import json
import codecs, os
from taipy.gui import Html
import pandas as pd
import requests
import statistics
from databases import db
pwd = os.getcwd()
HTML = os.path.join(pwd,"html", "index.html")
file_read = codecs.open(HTML, "r", "utf-8")
index = file_read.read()
html_page_index = Html(index)
def getmetricvoice(model):
rows = db(db.analitic_voice.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
durationL=list()
for i in rows_list:
durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['time'].values[0]
similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
efectivetime=time/duration
return ({"model":model,"duration":duration,"time":time,"similarity":similarity,"similaritypartial":similaritypartial,"efectivetime":efectivetime})
def html_getmetricvoice():
models=list()
for row in db().select(db.analitic_voice.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricvoice(model)
data=pd.DataFrame(data).T
datafiles={}
for row in db().select(db.analitic_voice.ALL):
datafiles[row.id]=row.as_dict()
datafiles=pd.DataFrame(datafiles).T
html="""