from taipy.gui import Gui
import hashlib
import json
import codecs, os
from taipy.gui import Html
import pandas as pd
import requests
import statistics
from databases import db
import time
pwd = os.getcwd()
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
configPath=os.path.join(os.getcwd(),relPath)
with open(configPath, 'r', encoding='utf-8') as file:
config = json.load(file)[nameModel]
Output= config[dataOut]
return Output
mode_list=extractConfig(nameModel="SystemData",dataOut="mode_list")
def getmetricvoice(model):
rows = db(db.analitic_voice.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
durationL=list()
for i in rows_list:
durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['time'].values[0]
similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
efectivetime=time/duration
return ({"model":model,"duration":duration,"time":time,"similarity":similarity,"similaritypartial":similaritypartial,"efectivetime":efectivetime})
def html_getmetricvoice():
models=list()
t=time.time()
for row in db().select(db.analitic_voice.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricvoice(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_voice.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
Data general de los modelos
{data_voice}
Data de cada muestra
{data_files_voice}
"""
#{data_files_voice}
return html,data,data_files
def getmetricllm_compra(model):
rows = db(db.analitic_llm_compra.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_compra():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_compra.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_compra(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_compra.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
Data general de los modelos
{data_llm_compra}
Data de cada muestra
{data_files_llm_compra}
"""
#{data_files_voice}
return html,data,data_files
def getmetricllm_generaciontexto(model):
rows = db(db.analitic_llm_generaciontexto.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_generaciontexto():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_generaciontexto.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_generaciontexto(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_generaciontexto.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
Data general de los modelos
{data_llm_generaciontexto}
Data de cada muestra
{data_files_llm_generaciontexto}
"""
#{data_files_voice}
return html,data,data_files
def getmetricllm_factura(model):
rows = db(db.analitic_llm_factura.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_factura():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_factura.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_factura(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_factura.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
Data general de los modelos
{data_llm_factura}
Data de cada muestra
{data_files_llm_factura}
"""
#{data_files_voice}
return html,data,data_files
def on_init(state):
state.html_page_getmetricsvoice,state.data_voice,state.data_files_voice=html_getmetricvoice()
state.html_page_getmetricsllm_compra,state.data_llm_compra,state.data_files_llm_compra=html_getmetricllm_compra()
state.html_page_getmetricsllm_generaciontexto,state.data_llm_generaciontexto,state.data_files_llm_generaciontexto=html_getmetricllm_generaciontexto()
state.html_page_getmetricsllm_factura,state.data_llm_factura,state.data_files_llm_factura=html_getmetricllm_factura()
pass
html_page_getmetricsvoice,data_voice,data_files_voice=html_getmetricvoice()
html_page_getmetricsllm_compra,data_llm_compra,data_files_llm_compra=html_getmetricllm_compra()
html_page_getmetricsllm_generaciontexto,data_llm_generaciontexto,data_files_llm_generaciontexto=html_getmetricllm_generaciontexto()
html_page_getmetricsllm_factura,data_llm_factura,data_files_llm_factura=html_getmetricllm_factura()
# mode="voice"
# modetypedata="audio"
# file="id2"
# def changemenu(mode):
# if mode_list[mode]=="audio":
# pathori="example/audio"
# if mode_list[mode]=="factura":
# pathori="example/factura"
# if mode_list[mode]=="texto":
# pathori="example/texto"
# seltypedata=mode_list[mode]
# dir_list = os.listdir(pathori)
# return pathori,seltypedata,dir_list
pages = {
"getmetricsvoice": Html(html_page_getmetricsvoice),
"getmetricsllm_compra": Html(html_page_getmetricsllm_compra),
"getmetricsllm_generaciontexto": Html(html_page_getmetricsllm_generaciontexto),
"getmetricsllm_factura": Html(html_page_getmetricsllm_factura)
}
app = Gui(pages=pages)
app.on_init=on_init
if __name__=="__main__":
app.run(use_reloader=True,port=7882)#state.imageActive2,