Compare commits

...

3 Commits

Author SHA1 Message Date
Mario Gil 7a9a9f7de1 feat: Metrics ok 2024-08-20 09:11:52 -05:00
Mario Gil 3514733885 feat: Eval LLm 2024-08-09 08:15:44 -05:00
Mario Gil 881d3074cf EvalCompra Ok 2024-08-03 01:38:04 -05:00
6 changed files with 1112 additions and 292 deletions

788
apis.py
View File

@ -45,6 +45,14 @@ class Response(BaseModel):
"""
path: str = Query("", description="Style and sentiments of text")
model : str = Query("whisper", description="Style and sentiments of text")
class Response4(BaseModel):
path: str = Query("", description="path file")
system: str = Query("", description="prompt system LLM model with ocr and image claude")
content: str = Query("%s", description="prompt content LLM model with ocr")
max_tokens: int = Query(1024, description="maxtoken LLM OCR model")
model: str = Query("Claude-sonnet", description="model")
class Response1(BaseModel):
path: str = Query("", description="path file")
task_prompt: str = Query("", description="task of model")
@ -66,7 +74,14 @@ class Response3(BaseModel):
"""
path: str = Query("", description="Style and sentiments of text")
Trusted: str = Query("", description="Style and sentiments of text")
mode : str = Query("whisper", description="Style and sentiments of text")
mode : str = Query("", description="Style and sentiments of text")
class Response5(BaseModel):
"""Structure of data to querry of make post from X or article blog
"""
prompt: str = Query("", description="Style and sentiments of text")
mode : str = Query("", description="Style and sentiments of text")
#Funcionales
@app.get("/addTrusted")
@ -99,11 +114,11 @@ def addTrusted(response:Response3):
content={"content": "file no found" }
)
if mode_list[mode]=="texto":
hash1 = hashlib.sha256(path.encode()).hexdigest()+".txt"
f = open("example/texto/"+hash1, "w")
f.write(path)
f.close()
path=pwd+"/"+pathText+hash1
info=str({"path":path,"trusted":Trusted,"mode":mode})
hash1 = hashlib.sha256(info.encode()).hexdigest()
# with open("example/texto/"+hash1, 'w') as f:
# json.dump(info, f)
# path=pwd+"/"+pathText+hash1
length=len(Trusted)
size=0
duration=0
@ -112,22 +127,63 @@ def addTrusted(response:Response3):
size=file_stats.st_size / (1024 * 1024)
length=0
duration=0
hash1=""
elif mode_list[mode]=="audio":
with audioread.audio_open(path) as f:
duration = f.duration
length=0
size=0
hash1=""
if db((db.trusted.path == path)&(db.trusted.mode == mode)).count()==0:
db.trusted.insert(path=path,trusted=Trusted,mode=mode,size=size,duration=duration,last_modified=last_modified,length=length )
db.trusted.insert(path=path,trusted=Trusted,mode=mode,size=size,duration=duration,last_modified=last_modified,length=length,hash=hash1 )
db.commit()
return "Add %s in mode %s"%(path,mode)
else:
item=db((db.trusted.path == path)&(db.trusted.mode == mode)).select().last()
modification_count=item.modification_count + 1
db((db.trusted.path == path)&(db.trusted.mode == mode)).update(trusted=Trusted,size=size,duration =duration,length=length,last_modified=last_modified,modification_count= modification_count)
db((db.trusted.path == path)&(db.trusted.mode == mode)).update(trusted=Trusted,size=size,duration =duration,length=length,last_modified=last_modified,modification_count= modification_count,hash=hash1)
db.commit()
return "Update %s in mode %s"%(path,mode)
@app.get("/addPrompt")
@app.post("/addPrompt")
def addPrompt(response:Response5):
"""Api to add information of Trusted data
Args:
response (Response3): 3 params:
path : path of archive on system if is a file OR text if is text.
Trusted : information Trusted or better information in a process.
mode: llm_compra,llm_factura,llm_generaciontexto,llm_rag,ocr,voice,
Returns:
_type_: _description_
"""
prompt=response.prompt
mode=response.mode
last_modified=datetime.now()
if mode not in mode_list.keys():
return JSONResponse(
status_code=404,
content={"content": "mode no found" }
)
if mode == "llm_compra" or mode == "llm_generaciontexto":
hash1 = str(hashlib.sha256(prompt.encode()).hexdigest())
# with open("example/texto/"+hash1, 'w') as f:
# json.dump(info, f)
# path=pwd+"/"+pathText+hash1
length=len(prompt)
if db((db.prompt.hash == hash1)&(db.prompt.mode == mode)).count()==0:
db.prompt.insert(prompt=prompt,mode=mode,last_modified=last_modified,length=length,hash=hash1 )
db.commit()
return "Add %s in mode %s"%(prompt,mode)
else:
A=db((db.prompt.hash == hash1)&(db.prompt.mode == mode)).update(prompt=prompt,mode=mode,last_modified=last_modified,length=length+1,hash=hash1)
db.commit()
print(A,last_modified)
return "Update %s in mode %s"%(prompt,mode)
@app.get("/EvalVoice")
@app.post("/EvalVoice")
@ -141,17 +197,18 @@ def EvalVoice(response:Response):
)
Trusted=db((db.trusted.path == path ) & ( db.trusted.mode == "voice")).select().last().trusted
print(Trusted)
if model=="whisper":
Sal=main.EvalWhisper(path,Trusted)
else:
Sal=main.EvalVosk(path,Trusted)
Sal["last_modified"]=datetime.now()
if db(db.analitic_voice.path == Sal["path"] and db.analitic_voice.model == Sal["model"]).count()==0:
if db((db.analitic_voice.path == Sal["path"]) & (db.analitic_voice.model == Sal["model"])).count()==0:
print(1,Sal)
db.analitic_voice.insert(**Sal)
db.commit()
else:
db(db.analitic_voice.path == Sal["path"] and db.analitic_voice.model == Sal["model"]).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],last_modified=Sal["last_modified"])
print(2,Sal)
db((db.analitic_voice.path == Sal["path"]) & (db.analitic_voice.model == Sal["model"])).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],last_modified=Sal["last_modified"])
db.commit()
return Sal
@ -192,7 +249,7 @@ def EvalVoicehtml():
</style>
</head>
<body>
<h1>Petición POST a API</h1>
<h1>Petición Evaluar modelo de voz contra datos curados</h1>
<select id="texto1">
%s
@ -237,6 +294,495 @@ def EvalVoicehtml():
"""%(Sal)
return HTMLResponse(content=html, status_code=200)
@app.get("/EvalLLMCompra")
@app.post("/EvalLLMCompra")
def EvalLLMCompra(response:Response4):
content=response.path
model=response.model
system= response.system
max_tokens= response.max_tokens
path=content
if db((db.trusted.path == path ) & ( db.trusted.mode == "llm_compra")).count()==0:
return JSONResponse(
status_code=404,
content={"content": "Trusted no found" }
)
Trusted=db((db.trusted.path == path ) & ( db.trusted.mode == "llm_compra")).select().last().trusted
Sal=main.EvalModelLLMCompra(system,content,model,max_tokens,Trusted)
Sal["last_modified"]=datetime.now()
if db((db.analitic_llm_compra.path == Sal["path"]) & (db.analitic_llm_compra.model == Sal["model"])).count()==0:
print(1,Sal)
db.analitic_llm_compra.insert(**Sal)
db.commit()
else:
print(2,Sal)
db((db.analitic_llm_compra.path == Sal["path"]) & (db.analitic_llm_compra.model == Sal["model"])).update(last_modified=Sal["last_modified"],relevance=Sal["relevance"],bias=Sal["bias"],toxic=Sal["toxic"],correctness=Sal["correctness"],relevance_r=Sal["relevance_r"],bias_r=Sal["bias_r"],toxic_r=Sal["toxic_r"],correctness_r=Sal["correctness_r"])
db.commit()
return Sal
@app.get("/evalllmcomprahtml")
def EvalLLMComprahtml():
dir_list = db((db.trusted.mode == "llm_compra" )).select()
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(i.path,str(t),str(i.path))
Sal=Sal+temp
t=t+1
dir_list2 = db((db.prompt.mode == "llm_compra" )).select()
Sal2=""
t=1
for i in dir_list2:
temp="""<option value="%s">Opción %s, %s</option>
"""%(i.prompt,str(t),str(i.prompt))
Sal2=Sal2+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion de modelos voice2txt</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición Evaluar modelo de LLM para evaluar compras contra datos curados</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="meta-llama/Meta-Llama-3.1-70B-Instruct">meta-llama/Meta-Llama-3.1-70B-Instruct</option>
<option value="meta-llama/Meta-Llama-3.1-8B-Instruct">meta-llama/Meta-Llama-3.1-8B-Instruct</option>
<option value="Mistral">Mistral</option>
</select>
<br>
<select id="texto3">
%s
</select>
<br>
<input type="text" id="texto4" placeholder="max_tokens">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const datos = {
path: texto1,
model: texto2,
system: texto3
};
fetch('/EvalLLMCompra', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal,Sal2)
return HTMLResponse(content=html, status_code=200)
#
@app.get("/EvalLLMGeneracionTexto")
@app.post("/EvalLLMGeneracionTexto")
def EvalLLMGeneracionTexto(response:Response4):
content=response.path
model=response.model
system= response.system
max_tokens= response.max_tokens
path=content
if db((db.trusted.path == path ) & ( db.trusted.mode == "llm_generaciontexto")).count()==0:
return JSONResponse(
status_code=404,
content={"content": "Trusted no found" }
)
Trusted=db((db.trusted.path == path ) & ( db.trusted.mode == "llm_generaciontexto")).select().last().trusted
Sal=main.EvalModelLLMCompra(system,content,model,max_tokens,Trusted)
Sal["last_modified"]=datetime.now()
if db((db.analitic_llm_generaciontexto.path == Sal["path"]) & (db.analitic_llm_generaciontexto.model == Sal["model"])).count()==0:
print(1,Sal)
db.analitic_llm_generaciontexto.insert(**Sal)
db.commit()
else:
print(2,Sal)
db((db.analitic_llm_generaciontexto.path == Sal["path"]) & (db.analitic_llm_generaciontexto.model == Sal["model"])).update(last_modified=Sal["last_modified"],relevance=Sal["relevance"],bias=Sal["bias"],toxic=Sal["toxic"],correctness=Sal["correctness"],relevance_r=Sal["relevance_r"],bias_r=Sal["bias_r"],toxic_r=Sal["toxic_r"],correctness_r=Sal["correctness_r"])
db.commit()
return Sal
@app.get("/evalllmgeneraciontextohtml")
def EvalLLMGeneracionTextohtml():
dir_list = db((db.trusted.mode == "llm_generaciontexto" )).select()
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(i.path,str(t),str(i.path))
Sal=Sal+temp
t=t+1
dir_list2 = db((db.prompt.mode == "llm_generaciontexto" )).select()
Sal2=""
t=1
for i in dir_list2:
temp="""<option value="%s">Opción %s, %s</option>
"""%(i.prompt,str(t),str(i.prompt))
Sal2=Sal2+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion de modelos voice2txt</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición Evaluar modelo de LLM para generar texto contra datos curados</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="meta-llama/Meta-Llama-3.1-70B-Instruct">meta-llama/Meta-Llama-3.1-70B-Instruct</option>
<option value="meta-llama/Meta-Llama-3.1-8B-Instruct">meta-llama/Meta-Llama-3.1-8B-Instruct</option>
<option value="Mistral">Mistral</option>
</select>
<br>
<select id="texto3">
%s
</select>
<br>
<input type="text" id="texto4" placeholder="max_tokens">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const datos = {
path: texto1,
model: texto2,
system: texto3
};
fetch('/EvalLLMGeneracionTexto', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal,Sal2)
return HTMLResponse(content=html, status_code=200)
#
@app.get("/EvalFact")
@app.post("/EvalFact")
def EvalFact(response:Response1):
path=response.path
task_prompt=response.task_prompt
option=response.model
TrustedOCR=response.TrustedOCR
Trusted=TrustedOCR
if task_prompt=="":
if Trusted=="":
row=db(db.trusted.path == path and db.trusted.mode == "OCR").select().first()
try:
Trusted=row.trusted
except:
pass
Sal=main.EvalFacturas(path,task_prompt,TrustedOCR,option)
Sal["path"]=path
if db(db.analitic_ocr.path == Sal["path"] and db.analitic_ocr.model == Sal["model"]).count()==0:
db.analitic_ocr.insert(**Sal)
db.commit()
else:
db(db.analitic_ocr.path == Sal["path"] and db.analitic_ocr.model == Sal["model"]).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],jsonok=Sal["jsonok"])
db.commit()
return Sal
@app.get("/evalocrfactura")
def EvalOCRFactura():
dir_list = os.listdir(pathFact)
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(str(pwd+"/"+pathFact+"/"+i),str(t),str(i))
Sal=Sal+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion de modelos OCR</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición POST a API</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="More Detailed Caption">More Detailed Caption</option>
<option value="OCR">OCR</option>
<option value="parsed">parsed</option>
<option value="scan">scan</option>
</select>
<br>
<input type="text" id="texto3" placeholder="TrustedOCR">
<br>
<input type="text" id="texto4" placeholder="option">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const texto4 = document.getElementById('texto4').value;
const datos = {
path: texto1,
task_prompt: texto2,
TrustedOCR: texto3,
option: texto4
};
fetch('/EvalFact', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal)
return HTMLResponse(content=html, status_code=200)
@app.get("/evalllmfacturas")
def EvalllmFacturas():
dir_list = os.listdir(pathFact)
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(str(pwd+"/"+pathFact+"/"+i),str(t),str(i))
Sal=Sal+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion modelos LLM</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición POST a API</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="">N.A.</option>
<option value="More Detailed Caption">More Detailed Caption</option>
<option value="OCR">OCR</option>
<option value="parsed">parsed</option>
<option value="scan">scan</option>
</select>
<br>
<input type="text" id="texto3" placeholder="system" value="Eres un chatbot amable">
<br>
<input type="text" id="texto4" placeholder="content" value="%s">
<br>
<input type="number" id="texto5" placeholder="max_tokens" value=1024>
<br>
<input type="text" id="texto6" placeholder="model" value="Claude-sonnet">
<br>
<input type="text" id="texto7" placeholder="prompt" value="Analiza la factura">
<br>
<input type="text" id="texto8" placeholder="TrustedLLmjson" value="{'A':''}">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const texto4 = document.getElementById('texto4').value;
const texto5 = document.getElementById('texto5').value;
const texto6 = document.getElementById('texto6').value;
const texto7 = document.getElementById('texto7').value;
const texto8 = document.getElementById('texto8').value;
const datos = {
path: texto1,
task_prompt: texto2,
system: texto3,
content:texto4,
max_tokens:texto5,
model:texto6,
prompt:texto7,
TrustedLLmjson:texto8,
};
fetch('/EvalLLMFact', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal,"%s")
return HTMLResponse(content=html, status_code=200)
#Por revisar
def list2tablehtml(listdata,model):
@ -385,33 +931,8 @@ display:flex;
@app.get("/EvalFact")
@app.post("/EvalFact")
def EvalFact(response:Response1):
path=response.path
task_prompt=response.task_prompt
option=response.model
TrustedOCR=response.TrustedOCR
Trusted=TrustedOCR
if task_prompt=="":
if Trusted=="":
row=db(db.trusted.path == path and db.trusted.mode == "OCR").select().first()
try:
Trusted=row.trusted
except:
pass
Sal=main.EvalFacturas(path,task_prompt,TrustedOCR,option)
Sal["path"]=path
if db(db.analitic_ocr.path == Sal["path"] and db.analitic_ocr.model == Sal["model"]).count()==0:
db.analitic_ocr.insert(**Sal)
db.commit()
else:
db(db.analitic_ocr.path == Sal["path"] and db.analitic_ocr.model == Sal["model"]).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],jsonok=Sal["jsonok"])
db.commit()
return Sal
@app.get("/EvalLLMFact")
@app.post("/EvalLLMFact")
def EvalLLMFact(response:Response2):
@ -429,93 +950,7 @@ def EvalLLMFact(response:Response2):
@app.get("/evalocrfactura")
def EvalOCRFactura():
dir_list = os.listdir(pathFact)
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(str(pwd+"/"+pathFact+"/"+i),str(t),str(i))
Sal=Sal+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion de modelos OCR</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición POST a API</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="More Detailed Caption">More Detailed Caption</option>
<option value="OCR">OCR</option>
<option value="parsed">parsed</option>
<option value="scan">scan</option>
</select>
<br>
<input type="text" id="texto3" placeholder="TrustedOCR">
<br>
<input type="text" id="texto4" placeholder="option">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const texto4 = document.getElementById('texto4').value;
const datos = {
path: texto1,
task_prompt: texto2,
TrustedOCR: texto3,
option: texto4
};
fetch('/EvalFact', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal)
return HTMLResponse(content=html, status_code=200)
def list2tablehtmlOCR(listdata,model):
html="""<h2>Table of {0}</h2>
@ -651,108 +1086,3 @@ display:flex;
@app.get("/evalllmfacturas")
def EvalllmFacturas():
dir_list = os.listdir(pathFact)
Sal=""
t=1
for i in dir_list:
temp="""<option value="%s">Opción %s, %s</option>
"""%(str(pwd+"/"+pathFact+"/"+i),str(t),str(i))
Sal=Sal+temp
t=t+1
html="""<!DOCTYPE html>
<html lang="es">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Evaluacion modelos LLM</title>
<style>
body {
font-family: Arial, sans-serif;
margin: 20px;
}
input, button {
margin: 10px 0;
padding: 5px;
}
#respuesta {
margin-top: 20px;
padding: 10px;
border: 1px solid #ccc;
background-color: #f9f9f9;
}
</style>
</head>
<body>
<h1>Petición POST a API</h1>
<select id="texto1">
%s
</select>
<br>
<select id="texto2">
<option value="">N.A.</option>
<option value="More Detailed Caption">More Detailed Caption</option>
<option value="OCR">OCR</option>
<option value="parsed">parsed</option>
<option value="scan">scan</option>
</select>
<br>
<input type="text" id="texto3" placeholder="system" value="Eres un chatbot amable">
<br>
<input type="text" id="texto4" placeholder="content" value="%s">
<br>
<input type="number" id="texto5" placeholder="max_tokens" value=1024>
<br>
<input type="text" id="texto6" placeholder="model" value="Claude-sonnet">
<br>
<input type="text" id="texto7" placeholder="prompt" value="Analiza la factura">
<br>
<input type="text" id="texto8" placeholder="TrustedLLmjson" value="{'A':''}">
<br>
<button onclick="enviarPeticion()">Enviar petición</button>
<div id="respuesta"></div>
<script>
function enviarPeticion() {
const texto1 = document.getElementById('texto1').value;
const texto2 = document.getElementById('texto2').value;
const texto3 = document.getElementById('texto3').value;
const texto4 = document.getElementById('texto4').value;
const texto5 = document.getElementById('texto5').value;
const texto6 = document.getElementById('texto6').value;
const texto7 = document.getElementById('texto7').value;
const texto8 = document.getElementById('texto8').value;
const datos = {
path: texto1,
task_prompt: texto2,
system: texto3,
content:texto4,
max_tokens:texto5,
model:texto6,
prompt:texto7,
TrustedLLmjson:texto8,
};
fetch('/EvalLLMFact', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(datos)
})
.then(response => response.json())
.then(data => {
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
})
.catch(error => {
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
});
}
</script>
</body>
</html>
"""%(Sal,"%s")
return HTMLResponse(content=html, status_code=200)

View File

@ -9,8 +9,20 @@ db.define_table(
Field("sizeMB",type="double",default=0),# audio,factura
Field("length",type="integer",default=0),#texto
Field('last_modified', 'datetime'),
Field('modification_count', 'integer', default=0)
Field('modification_count', 'integer', default=0),
Field('hash')
)
db.define_table(
"prompt",
Field("prompt"),
Field("mode"),
Field("length",type="integer",default=0),
Field('hash',unique=True),
Field('last_modified', 'datetime'),
)
db.define_table(
"analitic_voice",
Field("content"),
@ -43,8 +55,14 @@ db.define_table(
Field("model"),
Field("time", type="double"),
Field("path"),
Field("similarity", type="double"),
Field("similaritypartial", type="double"),
Field("relevance", type="double"),
Field("bias", type="double"),
Field("toxic", type="double"),
Field("correctness", type="double"),
Field("relevance_r"),
Field("bias_r"),
Field("toxic_r"),
Field("correctness_r"),
Field('last_modified', 'datetime')
)
@ -67,9 +85,15 @@ db.define_table(
Field("model"),
Field("time", type="double"),
Field("path"),
Field("similarity", type="double"),
Field("similaritypartial", type="double"),
Field('last_modified', 'datetime')
Field("relevance", type="double"),
Field("bias", type="double"),
Field("toxic", type="double"),
Field("correctness", type="double"),
Field("relevance_r"),
Field("bias_r"),
Field("toxic_r"),
Field("correctness_r"),
Field('last_modified', 'datetime')
)
db.define_table(

270
gui.py
View File

@ -7,12 +7,9 @@ import pandas as pd
import requests
import statistics
from databases import db
import time
pwd = os.getcwd()
HTML = os.path.join(pwd,"html", "index.html")
file_read = codecs.open(HTML, "r", "utf-8")
index = file_read.read()
html_page_index = Html(index)
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
configPath=os.path.join(os.getcwd(),relPath)
with open(configPath, 'r', encoding='utf-8') as file:
@ -20,6 +17,8 @@ def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experime
Output= config[dataOut]
return Output
mode_list=extractConfig(nameModel="SystemData",dataOut="mode_list")
def getmetricvoice(model):
rows = db(db.analitic_voice.model==model).select()
rows_list = rows.as_list()
@ -36,70 +35,247 @@ def getmetricvoice(model):
def html_getmetricvoice():
models=list()
t=time.time()
for row in db().select(db.analitic_voice.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricvoice(model)
data=pd.DataFrame(data).T
datafiles={}
data_files={}
for row in db().select(db.analitic_voice.ALL):
datafiles[row.id]=row.as_dict()
datafiles=pd.DataFrame(datafiles).T
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
<h1>Data general de los modelos</h1>
<taipy:table>{data_voice}</taipy:table>
<h1>Data de cada muestra</h1>
<taipy:table filter=True>{data_files_voice}</taipy:table>
"""
return html,data,datafiles
html_page_getmetricsvoice,data_voice,data_files_voices=html_getmetricvoice()
mode="voice"
modetypedata="audio"
file="id2"
def changemenu(mode):
if mode_list[mode]=="audio":
pathori="example/audio"
if mode_list[mode]=="factura":
pathori="example/factura"
if mode_list[mode]=="texto":
pathori="example/texto"
seltypedata=mode_list[mode]
dir_list = os.listdir(pathori)
return pathori,seltypedata,dir_list
"""
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
return html,data,data_files
def trustedallhtml(mode):
pathori,seltypedata,dir_list=changemenu(mode)
textmode=""
for modeused in mode_list.keys():
textmode=textmode+"('%s','%s'),"%(modeused,modeused)
html="""<taipy:selector lov="{[%s]}" dropdown True on_change=changemenu>{sel}</taipy:selector>"""%(textmode)
Sal=""
for i in dir_list:
temp="""('%s', '%s'),"""%(str(pwd+"/"+pathori+"/"+i),str(i))
Sal=Sal+temp
html2="""<taipy:selector lov="{[%s]}" dropdown True >{sel2}</taipy:selector>"""%(Sal)
return html+html2
html_page_trustedall = Html(trustedallhtml(mode))
#print(sel,sel2,seltypedata)
HTML = os.path.join(pwd,"html", "index.html")
file_read = codecs.open(HTML, "r", "utf-8")
index = file_read.read()
html_page_index = Html(index)
def getmetricllm_compra(model):
rows = db(db.analitic_llm_compra.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_compra():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_compra.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_compra(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_compra.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
<h1>Data general de los modelos</h1>
<taipy:table>{data_llm_compra}</taipy:table>
<h1>Data de cada muestra</h1>
<taipy:table filter=True >{data_files_llm_compra}</taipy:table>
"""
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
return html,data,data_files
def getmetricllm_generaciontexto(model):
rows = db(db.analitic_llm_generaciontexto.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_generaciontexto():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_generaciontexto.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_generaciontexto(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_generaciontexto.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
<h1>Data general de los modelos</h1>
<taipy:table>{data_llm_generaciontexto}</taipy:table>
<h1>Data de cada muestra</h1>
<taipy:table filter=True >{data_files_llm_generaciontexto}</taipy:table>
"""
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
return html,data,data_files
def getmetricllm_factura(model):
rows = db(db.analitic_llm_factura.model==model).select()
rows_list = rows.as_list()
data=pd.DataFrame(rows_list)
#durationL=list()
#for i in rows_list:
#durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
#duration=statistics.mean(durationL)
time=pd.pivot_table(data,values=['time'],index="model")['time'].values[0]
relevance=pd.pivot_table(data,values=["relevance"],index="model")['relevance'].values[0]
bias=pd.pivot_table(data,values=["bias"],index="model")['bias'].values[0]
toxic=pd.pivot_table(data,values=["toxic"],index="model")['toxic'].values[0]
correctness=pd.pivot_table(data,values=["correctness"],index="model")['correctness'].values[0]
#similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
#similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
#efectivetime=time/duration
return ({"model":model,"time":time,"relevance":relevance,"bias":bias,"toxic":toxic,"correctness":correctness})
def html_getmetricllm_factura():
models=list()
t=time.time()
for row in db().select(db.analitic_llm_factura.model, distinct=True):
models.append(row.model)
data={}
for model in models:
data[model]=getmetricllm_factura(model)
data=pd.DataFrame(data).T
data_files={}
for row in db().select(db.analitic_llm_factura.ALL):
data_files[row.id]=row.as_dict()
data_files=pd.DataFrame(data_files).T
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
#columns=['model'], aggfunc="sum")
html="""
<h1>Data general de los modelos</h1>
<taipy:table>{data_llm_factura}</taipy:table>
<h1>Data de cada muestra</h1>
<taipy:table filter=True >{data_files_llm_factura}</taipy:table>
"""
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
return html,data,data_files
def on_init(state):
state.html_page_getmetricsvoice,state.data_voice,state.data_files_voice=html_getmetricvoice()
state.html_page_getmetricsllm_compra,state.data_llm_compra,state.data_files_llm_compra=html_getmetricllm_compra()
state.html_page_getmetricsllm_generaciontexto,state.data_llm_generaciontexto,state.data_files_llm_generaciontexto=html_getmetricllm_generaciontexto()
state.html_page_getmetricsllm_factura,state.data_llm_factura,state.data_files_llm_factura=html_getmetricllm_factura()
pass
html_page_getmetricsvoice,data_voice,data_files_voice=html_getmetricvoice()
html_page_getmetricsllm_compra,data_llm_compra,data_files_llm_compra=html_getmetricllm_compra()
html_page_getmetricsllm_generaciontexto,data_llm_generaciontexto,data_files_llm_generaciontexto=html_getmetricllm_generaciontexto()
html_page_getmetricsllm_factura,data_llm_factura,data_files_llm_factura=html_getmetricllm_factura()
# mode="voice"
# modetypedata="audio"
# file="id2"
# def changemenu(mode):
# if mode_list[mode]=="audio":
# pathori="example/audio"
# if mode_list[mode]=="factura":
# pathori="example/factura"
# if mode_list[mode]=="texto":
# pathori="example/texto"
# seltypedata=mode_list[mode]
# dir_list = os.listdir(pathori)
# return pathori,seltypedata,dir_list
data=pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
pages = {
"/": html_page_index ,
"getmetricsvoice": Html(html_page_getmetricsvoice),
"trustedall":html_page_trustedall
"getmetricsllm_compra": Html(html_page_getmetricsllm_compra),
"getmetricsllm_generaciontexto": Html(html_page_getmetricsllm_generaciontexto),
"getmetricsllm_factura": Html(html_page_getmetricsllm_factura)
}
app = Gui(pages=pages)
app.on_init=on_init
if __name__=="__main__":
app.run(use_reloader=True,port=7882, change_delay=1600)#state.imageActive2,
app.run(use_reloader=True,port=7882)#state.imageActive2,

111
main.py
View File

@ -2,24 +2,37 @@ import requests
import evaluate
import deepdiff
import json
import os
from fuzzywuzzy import fuzz
from deepdiff import DeepDiff
from deepdiff import Delta
import databases
import metrics
#print(evaluate.list_evaluation_modules())
pwd = os.getcwd()
urlAud="http://127.0.0.1:7870/"
urlText="http://127.0.0.1:7869"
password="1223Aer*"
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
configPath=os.path.join(os.getcwd(),relPath)
with open(configPath, 'r', encoding='utf-8') as file:
config = json.load(file)[nameModel]
Output= config[dataOut]
return Output
mode_list=extractConfig(nameModel="SystemData",dataOut="mode_list")
keyanthropic=extractConfig(nameModel="SystemData",dataOut="keyantrophics")
password=extractConfig(nameModel="SystemData",dataOut="password")
def EvalVoice2Text(endpoint,datajson,Trusted):
"""Evaluate Voice 2 text
"""
apiUrl=urlAud+endpoint
response = requests.get(apiUrl, json=datajson)
print(datajson)
A=json.loads(response.content)
print(A)
time=A['time']
similarity=fuzz.ratio( Trusted.strip().lower(),A['message'].strip().lower())
similarityPartial=fuzz.partial_ratio( Trusted.strip().lower(),A['message'].strip().lower())
path=datajson["local"]
@ -34,27 +47,105 @@ def EvalVoice2Text(endpoint,datajson,Trusted):
"path":path
}
def EvalWhisper(path,Trusted=""):
endpoint="/voice2txt"
datajson={"url":"","password":password ,"model":"whisper","local":path}
return EvalVoice2Text(endpoint,datajson,Trusted)
# EvalWhisper(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
# endpoint="/voice2txt")
def EvalVosk(path,Trusted=""):
endpoint="/voice2txtlocal"
datajson={"url":"","password":password ,"model":"models/vosk-model-small-es-0.42","local":path}
return EvalVoice2Text(endpoint,datajson,Trusted)
def EvalLLMCompra(endpoint,datajson,Trusted):
"""Evaluate LLL compra
"""
apiUrl=urlText+endpoint
response = requests.get(apiUrl, json=datajson)
A=json.loads(response.content)
time=A['time']
relevance=metrics.RelevanceMetric(datajson["system"]+datajson["content"],response.content)
bias=metrics.BiasMetric22(datajson["system"]+datajson["content"],response.content)
toxic=metrics.ToxicMetric(datajson["system"]+datajson["content"],response.content)
correctness=metrics.correctnessMetric(datajson["system"]+datajson["content"],response.content,Trusted)
#jsonmetrics=metrics.jsonMetrics(response.content,Trusted)
#similarity=fuzz.ratio( Trusted.strip().lower(),A['content'].strip().lower())
#similarityPartial=fuzz.partial_ratio( Trusted.strip().lower(),A['content'].strip().lower())
#path=datajson["local"]
model=datajson["model"]
message=A['content']
return {"content":message,
"trusted":Trusted,
"model":model,
"time":time,
"relevance":relevance["score"],
"bias":bias["score"],
"toxic":toxic["score"],
"correctness":correctness["score"],
"relevance_r":relevance["reason"],
"bias_r":bias["reason"],
"toxic_r":toxic["reason"],
"correctness_r":correctness["reason"],
"path":message
}
def EvalModelLLMCompra(system,content,model,max_new_tokens,Trusted):
endpoint="/genTextCustom"
datajson={"system":system,"content":content,"password":password ,"model":model,"max_new_token":max_new_tokens}
return EvalLLMCompra(endpoint,datajson,Trusted)
def EvalLLMGeneracionTexto(endpoint,datajson,Trusted):
"""Evaluate LLL compra
"""
apiUrl=urlText+endpoint
response = requests.get(apiUrl, json=datajson)
A=json.loads(response.content)
time=A['time']
relevance=metrics.RelevanceMetric(datajson["system"]+datajson["content"],response.content)
bias=metrics.BiasMetric22(datajson["system"]+datajson["content"],response.content)
toxic=metrics.ToxicMetric(datajson["system"]+datajson["content"],response.content)
correctness=metrics.correctnessMetric(datajson["system"]+datajson["content"],response.content,Trusted)
#jsonmetrics=metrics.jsonMetrics(response.content,Trusted)
#similarity=fuzz.ratio( Trusted.strip().lower(),A['content'].strip().lower())
#similarityPartial=fuzz.partial_ratio( Trusted.strip().lower(),A['content'].strip().lower())
#path=datajson["local"]
model=datajson["model"]
message=A['content']
return {"content":message,
"trusted":Trusted,
"model":model,
"time":time,
"relevance":relevance["score"],
"bias":bias["score"],
"toxic":toxic["score"],
"correctness":correctness["score"],
"relevance_r":relevance["reason"],
"bias_r":bias["reason"],
"toxic_r":toxic["reason"],
"correctness_r":correctness["reason"],
"path":message
}
def EvalModelLLMGeneracionTexto(system,content,model,max_new_tokens,Trusted):
endpoint="/genTextCustom"
datajson={"system":system,"content":content,"password":password ,"model":model,"max_new_token":max_new_tokens}
return EvalLLMGeneracionTexto(endpoint,datajson,Trusted)
# EvalVosk(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
# endpoint="/voice2txtlocal")
# EvalWhisper(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
# endpoint="/voice2txt")
def ocrfacturas(path,task_prompt):

150
metrics.py Normal file
View File

@ -0,0 +1,150 @@
from pydantic import BaseModel
from anthropic import Anthropic
import instructor
from deepeval.models import DeepEvalBaseLLM
from deepeval.metrics import AnswerRelevancyMetric
from deepeval.test_case import LLMTestCase
from deepeval.metrics import BiasMetric
from deepeval.metrics import ToxicityMetric
from deepeval.metrics import GEval
from deepeval.test_case import LLMTestCaseParams
from deepdiff import DeepDiff
import json
import os
pwd = os.getcwd()
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
configPath=os.path.join(os.getcwd(),relPath)
with open(configPath, 'r', encoding='utf-8') as file:
config = json.load(file)[nameModel]
Output= config[dataOut]
return Output
keyanthropic=extractConfig(nameModel="SystemData",dataOut="keyantrophics")
class CustomClaudeOpus(DeepEvalBaseLLM):
def __init__(self):
self.model = Anthropic(api_key=keyanthropic)
def load_model(self):
return self.model
def generate(self, prompt: str, schema: BaseModel) -> BaseModel:
client = self.load_model()
instructor_client = instructor.from_anthropic(client)
resp = instructor_client.messages.create(
model="claude-3-5-sonnet-20240620",
max_tokens=1024,
messages=[
{
"role": "user",
"content": prompt,
}
],
response_model=schema,
)
return resp
async def a_generate(self, prompt: str, schema: BaseModel) -> BaseModel:
return self.generate(prompt, schema)
def get_model_name(self):
return "Claude-3.5 sonnet"
customModel=CustomClaudeOpus()
def BiasMetric22(input,actual_output):
metric = BiasMetric(threshold=0.5,model=customModel)
test_case = LLMTestCase(
input=input,
actual_output=actual_output
)
metric.measure(test_case)
return {"score":metric.score,"reason":metric.reason}
def RelevanceMetric(input,actual_output):
# Replace this with the actual output from your LLM application
metric = AnswerRelevancyMetric(
threshold=0.7,
model=customModel,
include_reason=True
)
test_case = LLMTestCase(
input=input,
actual_output=actual_output
)
metric.measure(test_case)
return {"score":metric.score,"reason":metric.reason}
def ToxicMetric(input,actual_output):
metric = ToxicityMetric(threshold=0.5,model=customModel)
test_case = LLMTestCase(
input=input,
actual_output=actual_output
)
metric.measure(test_case)
print(metric.score,"toxic")
return {"score":metric.score,"reason":metric.reason}
def correctnessMetric(input,actual_output,expected_output,criteria="Determine that the output is a json whose keys contain with compra and the data correspond to the input",evaluation_steps=["Check whether the facts in 'actual output' contradicts any facts in 'expected output'","You should also heavily penalize omission of detail","Vague language, or contradicting OPINIONS, are OK" ]):
correctness_metric = GEval(
name="Correctness",
model=customModel,
criteria=criteria,
# NOTE: you can only provide either criteria or evaluation_steps, and not both
#evaluation_steps=evaluation_steps,
evaluation_params=[LLMTestCaseParams.INPUT, LLMTestCaseParams.ACTUAL_OUTPUT]
)
test_case = LLMTestCase(
input=input,
actual_output=actual_output,
expected_output=expected_output
)
correctness_metric.measure(test_case)
return {"score":correctness_metric.score,"reason":correctness_metric.reason}
def jsonMetrics(text,Trusted):
false=False
print(type(text),type(Trusted))
try:
A=json.loads(text)
jsonOk=1
except:
jsonOk=0
print(jsonOk)
if jsonOk==1:
try:
Trus=json.loads(Trusted)
except:
Trus=Trusted
print(11111,3333,Trus)
# print(type(A),type(json.loads(Trus)))
# ddiff = DeepDiff(A, Trus)
# print(5555,ddiff)
# affectedkeys=ddiff.affected_root_keys/len(A.keys())
# keys=set(json.loads(Trusted).keys())
# jsonkeys=set(A.keys())
# TotKey=len(keys.intersection(jsonkeys))/len(keys)
# keyplus=jsonkeys.intersection(keys)
# else:
# TotKey=0
# keyplus=0
# affectedkeys=0
return {"jsonOk":jsonOk}#,"TotKey":TotKey,"keyplus":keyplus,"affectedkeys":affectedkeys}

View File

@ -2,9 +2,11 @@ aiohttp==3.9.5
aiosignal==1.3.1
aniso8601==9.0.1
annotated-types==0.7.0
anthropic==0.32.0
anyio==4.4.0
apispec==6.4.0
apispec-webframeworks==1.0.0
appdirs==1.4.4
arrow==1.3.0
attrs==23.2.0
audioread==3.0.1
@ -20,13 +22,20 @@ charset-normalizer==3.3.2
click==8.1.7
constantly==23.10.4
cookiecutter==2.5.0
dataclasses-json==0.6.7
datasets==2.19.1
deepdiff==6.7.1
deepeval==0.21.74
Deprecated==1.2.14
dill==0.3.8
distro==1.9.0
dnspython==2.6.1
docstring_parser==0.16
docx2txt==0.8
email_validator==2.2.0
et-xmlfile==1.1.0
evaluate==0.4.2
execnet==2.1.1
fastapi==0.111.0
fastapi-cli==0.0.4
filelock==3.14.0
@ -40,7 +49,9 @@ fuzzywuzzy==0.18.0
gevent==23.9.1
gevent-websocket==0.10.1
gitignore_parser==0.1.11
googleapis-common-protos==1.63.2
greenlet==3.0.3
grpcio==1.63.0
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
@ -48,11 +59,23 @@ httpx==0.27.0
huggingface-hub==0.23.2
hyperlink==21.0.0
idna==3.7
importlib-metadata==7.0.0
incremental==24.7.2
iniconfig==2.0.0
instructor==1.3.7
itsdangerous==2.2.0
Jinja2==3.1.4
jiter==0.4.2
jmespath==1.0.1
jsonpatch==1.33
jsonpointer==3.0.0
kthread==0.2.3
langchain==0.2.12
langchain-community==0.2.11
langchain-core==0.2.28
langchain-openai==0.1.20
langchain-text-splitters==0.2.2
langsmith==0.1.98
Levenshtein==0.25.1
Markdown==3.5.2
markdown-it-py==3.0.0
@ -62,14 +85,26 @@ mdurl==0.1.2
multidict==6.0.5
multiprocess==0.70.16
mutagen==1.47.0
mypy-extensions==1.0.0
nest-asyncio==1.6.0
networkx==3.2.1
numpy==1.26.4
openai==1.39.0
openpyxl==3.1.2
opentelemetry-api==1.24.0
opentelemetry-exporter-otlp-proto-common==1.24.0
opentelemetry-exporter-otlp-proto-grpc==1.24.0
opentelemetry-proto==1.24.0
opentelemetry-sdk==1.24.0
opentelemetry-semantic-conventions==0.45b0
ordered-set==4.1.0
orjson==3.10.6
packaging==24.0
pandas==2.2.0
passlib==1.7.4
pluggy==1.5.0
portalocker==2.10.1
protobuf==4.25.1
pyarrow==15.0.0
pyarrow-hotfix==0.6
pydal==20240713.1
@ -77,6 +112,10 @@ pydantic==2.8.2
pydantic_core==2.20.1
Pygments==2.18.0
pymongo==4.6.1
pysbd==0.3.4
pytest==8.3.2
pytest-repeat==0.9.3
pytest-xdist==3.6.1
python-dateutil==2.9.0.post0
python-dotenv==1.0.1
python-engineio==4.9.1
@ -86,28 +125,36 @@ python-slugify==8.0.4
python-socketio==5.11.3
pytz==2023.3.post1
PyYAML==6.0.1
ragas==0.1.13
rapidfuzz==3.9.4
regex==2024.7.24
requests==2.32.3
rich==13.7.1
s3transfer==0.10.2
sentry-sdk==2.12.0
shellingham==1.5.4
simple-websocket==1.0.0
six==1.16.0
sniffio==1.3.1
SQLAlchemy==2.0.25
starlette==0.37.2
tabulate==0.9.0
taipy==3.1.1
taipy-config==3.1.1
taipy-core==3.1.1
taipy-gui==3.1.4
taipy-rest==3.1.1
taipy-templates==3.1.1
tenacity==8.4.2
text-unidecode==1.3
tiktoken==0.7.0
tokenizers==0.19.1
toml==0.10.2
tqdm==4.66.4
Twisted==23.10.0
typer==0.12.3
types-python-dateutil==2.9.0.20240316
typing-inspect==0.9.0
typing_extensions==4.12.0
tzdata==2024.1
tzlocal==5.2
@ -118,8 +165,10 @@ uvloop==0.19.0
watchfiles==0.22.0
websockets==12.0
Werkzeug==3.0.3
wrapt==1.16.0
wsproto==1.2.0
xxhash==3.4.1
yarl==1.9.4
zipp==3.19.2
zope.event==5.0
zope.interface==6.4.post2