EvalCompra Ok
This commit is contained in:
parent
b5f235f5ae
commit
881d3074cf
214
apis.py
214
apis.py
|
@ -45,6 +45,14 @@ class Response(BaseModel):
|
|||
"""
|
||||
path: str = Query("", description="Style and sentiments of text")
|
||||
model : str = Query("whisper", description="Style and sentiments of text")
|
||||
class Response4(BaseModel):
|
||||
path: str = Query("", description="path file")
|
||||
system: str = Query("", description="prompt system LLM model with ocr and image claude")
|
||||
content: str = Query("%s", description="prompt content LLM model with ocr")
|
||||
max_tokens: int = Query(1024, description="maxtoken LLM OCR model")
|
||||
model: str = Query("Claude-sonnet", description="model")
|
||||
|
||||
|
||||
class Response1(BaseModel):
|
||||
path: str = Query("", description="path file")
|
||||
task_prompt: str = Query("", description="task of model")
|
||||
|
@ -66,7 +74,14 @@ class Response3(BaseModel):
|
|||
"""
|
||||
path: str = Query("", description="Style and sentiments of text")
|
||||
Trusted: str = Query("", description="Style and sentiments of text")
|
||||
mode : str = Query("whisper", description="Style and sentiments of text")
|
||||
mode : str = Query("", description="Style and sentiments of text")
|
||||
|
||||
class Response5(BaseModel):
|
||||
"""Structure of data to querry of make post from X or article blog
|
||||
"""
|
||||
prompt: str = Query("", description="Style and sentiments of text")
|
||||
mode : str = Query("", description="Style and sentiments of text")
|
||||
|
||||
|
||||
#Funcionales
|
||||
@app.get("/addTrusted")
|
||||
|
@ -99,11 +114,11 @@ def addTrusted(response:Response3):
|
|||
content={"content": "file no found" }
|
||||
)
|
||||
if mode_list[mode]=="texto":
|
||||
hash1 = hashlib.sha256(path.encode()).hexdigest()+".txt"
|
||||
f = open("example/texto/"+hash1, "w")
|
||||
f.write(path)
|
||||
f.close()
|
||||
path=pwd+"/"+pathText+hash1
|
||||
info=str({"path":path,"trusted":Trusted,"mode":mode})
|
||||
hash1 = hashlib.sha256(info.encode()).hexdigest()
|
||||
# with open("example/texto/"+hash1, 'w') as f:
|
||||
# json.dump(info, f)
|
||||
# path=pwd+"/"+pathText+hash1
|
||||
length=len(Trusted)
|
||||
size=0
|
||||
duration=0
|
||||
|
@ -112,22 +127,63 @@ def addTrusted(response:Response3):
|
|||
size=file_stats.st_size / (1024 * 1024)
|
||||
length=0
|
||||
duration=0
|
||||
hash1=""
|
||||
elif mode_list[mode]=="audio":
|
||||
with audioread.audio_open(path) as f:
|
||||
duration = f.duration
|
||||
length=0
|
||||
size=0
|
||||
|
||||
hash1=""
|
||||
if db((db.trusted.path == path)&(db.trusted.mode == mode)).count()==0:
|
||||
db.trusted.insert(path=path,trusted=Trusted,mode=mode,size=size,duration=duration,last_modified=last_modified,length=length )
|
||||
db.trusted.insert(path=path,trusted=Trusted,mode=mode,size=size,duration=duration,last_modified=last_modified,length=length,hash=hash1 )
|
||||
db.commit()
|
||||
return "Add %s in mode %s"%(path,mode)
|
||||
else:
|
||||
item=db((db.trusted.path == path)&(db.trusted.mode == mode)).select().last()
|
||||
modification_count=item.modification_count + 1
|
||||
db((db.trusted.path == path)&(db.trusted.mode == mode)).update(trusted=Trusted,size=size,duration =duration,length=length,last_modified=last_modified,modification_count= modification_count)
|
||||
db((db.trusted.path == path)&(db.trusted.mode == mode)).update(trusted=Trusted,size=size,duration =duration,length=length,last_modified=last_modified,modification_count= modification_count,hash=hash1)
|
||||
db.commit()
|
||||
return "Update %s in mode %s"%(path,mode)
|
||||
|
||||
|
||||
@app.get("/addPrompt")
|
||||
@app.post("/addPrompt")
|
||||
def addPrompt(response:Response5):
|
||||
"""Api to add information of Trusted data
|
||||
|
||||
Args:
|
||||
response (Response3): 3 params:
|
||||
path : path of archive on system if is a file OR text if is text.
|
||||
Trusted : information Trusted or better information in a process.
|
||||
mode: llm_compra,llm_factura,llm_generaciontexto,llm_rag,ocr,voice,
|
||||
|
||||
Returns:
|
||||
_type_: _description_
|
||||
"""
|
||||
prompt=response.prompt
|
||||
mode=response.mode
|
||||
last_modified=datetime.now()
|
||||
if mode not in mode_list.keys():
|
||||
return JSONResponse(
|
||||
status_code=404,
|
||||
content={"content": "mode no found" }
|
||||
)
|
||||
if mode == "llm_compra":
|
||||
hash1 = str(hashlib.sha256(prompt.encode()).hexdigest())
|
||||
# with open("example/texto/"+hash1, 'w') as f:
|
||||
# json.dump(info, f)
|
||||
# path=pwd+"/"+pathText+hash1
|
||||
length=len(prompt)
|
||||
if db((db.prompt.hash == hash1)&(db.prompt.mode == mode)).count()==0:
|
||||
db.prompt.insert(prompt=prompt,mode=mode,last_modified=last_modified,length=length,hash=hash1 )
|
||||
db.commit()
|
||||
return "Add %s in mode %s"%(prompt,mode)
|
||||
else:
|
||||
A=db((db.prompt.hash == hash1)&(db.prompt.mode == mode)).update(prompt=prompt,mode=mode,last_modified=last_modified,length=length+1,hash=hash1)
|
||||
db.commit()
|
||||
print(A,last_modified)
|
||||
return "Update %s in mode %s"%(prompt,mode)
|
||||
|
||||
|
||||
@app.get("/EvalVoice")
|
||||
@app.post("/EvalVoice")
|
||||
|
@ -141,17 +197,18 @@ def EvalVoice(response:Response):
|
|||
)
|
||||
|
||||
Trusted=db((db.trusted.path == path ) & ( db.trusted.mode == "voice")).select().last().trusted
|
||||
print(Trusted)
|
||||
if model=="whisper":
|
||||
Sal=main.EvalWhisper(path,Trusted)
|
||||
else:
|
||||
Sal=main.EvalVosk(path,Trusted)
|
||||
Sal["last_modified"]=datetime.now()
|
||||
if db(db.analitic_voice.path == Sal["path"] and db.analitic_voice.model == Sal["model"]).count()==0:
|
||||
if db((db.analitic_voice.path == Sal["path"]) & (db.analitic_voice.model == Sal["model"])).count()==0:
|
||||
print(1,Sal)
|
||||
db.analitic_voice.insert(**Sal)
|
||||
db.commit()
|
||||
else:
|
||||
db(db.analitic_voice.path == Sal["path"] and db.analitic_voice.model == Sal["model"]).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],last_modified=Sal["last_modified"])
|
||||
print(2,Sal)
|
||||
db((db.analitic_voice.path == Sal["path"]) & (db.analitic_voice.model == Sal["model"])).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],last_modified=Sal["last_modified"])
|
||||
db.commit()
|
||||
return Sal
|
||||
|
||||
|
@ -192,7 +249,7 @@ def EvalVoicehtml():
|
|||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Petición POST a API</h1>
|
||||
<h1>Petición Evaluar modelo de voz comtra datos curados</h1>
|
||||
|
||||
<select id="texto1">
|
||||
%s
|
||||
|
@ -237,6 +294,137 @@ def EvalVoicehtml():
|
|||
"""%(Sal)
|
||||
return HTMLResponse(content=html, status_code=200)
|
||||
|
||||
|
||||
@app.get("/EvalLLMCompra")
|
||||
@app.post("/EvalLLMCompra")
|
||||
def EvalLLMCompra(response:Response4):
|
||||
content=response.path
|
||||
model=response.model
|
||||
system= response.system
|
||||
max_tokens= response.max_tokens
|
||||
path=content
|
||||
|
||||
if db((db.trusted.path == path ) & ( db.trusted.mode == "llm_compra")).count()==0:
|
||||
return JSONResponse(
|
||||
status_code=404,
|
||||
content={"content": "Trusted no found" }
|
||||
)
|
||||
|
||||
Trusted=db((db.trusted.path == path ) & ( db.trusted.mode == "llm_compra")).select().last().trusted
|
||||
Sal=main.EvalModelLLMCompra(system,content,model,max_tokens,Trusted)
|
||||
Sal["last_modified"]=datetime.now()
|
||||
if db((db.analitic_llm_compra.path == Sal["path"]) & (db.analitic_llm_compra.model == Sal["model"])).count()==0:
|
||||
print(1,Sal)
|
||||
db.analitic_llm_compra.insert(**Sal)
|
||||
db.commit()
|
||||
else:
|
||||
print(2,Sal)
|
||||
db((db.analitic_llm_compra.path == Sal["path"]) & (db.analitic_llm_compra.model == Sal["model"])).update(similarity= Sal["similarity"],similaritypartial= Sal["similaritypartial"],last_modified=Sal["last_modified"])
|
||||
db.commit()
|
||||
return Sal
|
||||
|
||||
@app.get("/evalllmcomprahtml")
|
||||
def EvalLLMComprahtml():
|
||||
dir_list = db((db.trusted.mode == "llm_compra" )).select()
|
||||
Sal=""
|
||||
t=1
|
||||
for i in dir_list:
|
||||
temp="""<option value="%s">Opción %s, %s</option>
|
||||
"""%(i.path,str(t),str(i.path))
|
||||
Sal=Sal+temp
|
||||
t=t+1
|
||||
|
||||
dir_list2 = db((db.prompt.mode == "llm_compra" )).select()
|
||||
Sal2=""
|
||||
t=1
|
||||
for i in dir_list2:
|
||||
temp="""<option value="%s">Opción %s, %s</option>
|
||||
"""%(i.prompt,str(t),str(i.prompt))
|
||||
Sal2=Sal2+temp
|
||||
t=t+1
|
||||
|
||||
|
||||
html="""<!DOCTYPE html>
|
||||
<html lang="es">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Evaluacion de modelos voice2txt</title>
|
||||
<style>
|
||||
body {
|
||||
font-family: Arial, sans-serif;
|
||||
margin: 20px;
|
||||
}
|
||||
input, button {
|
||||
margin: 10px 0;
|
||||
padding: 5px;
|
||||
}
|
||||
#respuesta {
|
||||
margin-top: 20px;
|
||||
padding: 10px;
|
||||
border: 1px solid #ccc;
|
||||
background-color: #f9f9f9;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Petición Evaluar modelo de voz comtra datos curados</h1>
|
||||
|
||||
<select id="texto1">
|
||||
%s
|
||||
</select>
|
||||
|
||||
<br>
|
||||
<select id="texto2">
|
||||
<option value="meta-llama/Meta-Llama-3.1-70B-Instruct">meta-llama/Meta-Llama-3.1-70B-Instruct</option>
|
||||
<option value="meta-llama/Meta-Llama-3.1-8B-Instruct">meta-llama/Meta-Llama-3.1-8B-Instruct</option>
|
||||
<option value="Mistral">Mistral</option>
|
||||
</select>
|
||||
<br>
|
||||
<select id="texto3">
|
||||
%s
|
||||
</select>
|
||||
<br>
|
||||
<input type="text" id="texto4" placeholder="max_tokens">
|
||||
<br>
|
||||
<button onclick="enviarPeticion()">Enviar petición</button>
|
||||
<div id="respuesta"></div>
|
||||
|
||||
<script>
|
||||
function enviarPeticion() {
|
||||
const texto1 = document.getElementById('texto1').value;
|
||||
const texto2 = document.getElementById('texto2').value;
|
||||
const texto3 = document.getElementById('texto3').value;
|
||||
const datos = {
|
||||
path: texto1,
|
||||
model: texto2,
|
||||
system: texto3
|
||||
|
||||
|
||||
};
|
||||
|
||||
fetch('/EvalLLMCompra', {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json'
|
||||
},
|
||||
body: JSON.stringify(datos)
|
||||
})
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
document.getElementById('respuesta').innerHTML = JSON.stringify(data, null, 2);
|
||||
})
|
||||
.catch(error => {
|
||||
document.getElementById('respuesta').innerHTML = 'Error: ' + error;
|
||||
});
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
"""%(Sal,Sal2)
|
||||
return HTMLResponse(content=html, status_code=200)
|
||||
|
||||
|
||||
#Por revisar
|
||||
|
||||
def list2tablehtml(listdata,model):
|
||||
|
|
14
databases.py
14
databases.py
|
@ -9,8 +9,20 @@ db.define_table(
|
|||
Field("sizeMB",type="double",default=0),# audio,factura
|
||||
Field("length",type="integer",default=0),#texto
|
||||
Field('last_modified', 'datetime'),
|
||||
Field('modification_count', 'integer', default=0)
|
||||
Field('modification_count', 'integer', default=0),
|
||||
Field('hash')
|
||||
)
|
||||
|
||||
db.define_table(
|
||||
"prompt",
|
||||
Field("prompt"),
|
||||
Field("mode"),
|
||||
Field("length",type="integer",default=0),
|
||||
Field('hash',unique=True),
|
||||
Field('last_modified', 'datetime'),
|
||||
)
|
||||
|
||||
|
||||
db.define_table(
|
||||
"analitic_voice",
|
||||
Field("content"),
|
||||
|
|
134
gui.py
134
gui.py
|
@ -7,12 +7,9 @@ import pandas as pd
|
|||
import requests
|
||||
import statistics
|
||||
from databases import db
|
||||
import time
|
||||
pwd = os.getcwd()
|
||||
|
||||
HTML = os.path.join(pwd,"html", "index.html")
|
||||
file_read = codecs.open(HTML, "r", "utf-8")
|
||||
index = file_read.read()
|
||||
html_page_index = Html(index)
|
||||
def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experiment_config.json"),dataOut="keyantrophics"):
|
||||
configPath=os.path.join(os.getcwd(),relPath)
|
||||
with open(configPath, 'r', encoding='utf-8') as file:
|
||||
|
@ -20,6 +17,8 @@ def extractConfig(nameModel="SystemData",relPath=os.path.join(pwd,"conf/experime
|
|||
Output= config[dataOut]
|
||||
return Output
|
||||
mode_list=extractConfig(nameModel="SystemData",dataOut="mode_list")
|
||||
|
||||
|
||||
def getmetricvoice(model):
|
||||
rows = db(db.analitic_voice.model==model).select()
|
||||
rows_list = rows.as_list()
|
||||
|
@ -36,70 +35,113 @@ def getmetricvoice(model):
|
|||
|
||||
def html_getmetricvoice():
|
||||
models=list()
|
||||
t=time.time()
|
||||
for row in db().select(db.analitic_voice.model, distinct=True):
|
||||
models.append(row.model)
|
||||
data={}
|
||||
for model in models:
|
||||
data[model]=getmetricvoice(model)
|
||||
data=pd.DataFrame(data).T
|
||||
datafiles={}
|
||||
data_files={}
|
||||
for row in db().select(db.analitic_voice.ALL):
|
||||
datafiles[row.id]=row.as_dict()
|
||||
datafiles=pd.DataFrame(datafiles).T
|
||||
data_files[row.id]=row.as_dict()
|
||||
#print(datafiles)
|
||||
data_files=pd.DataFrame(data_files).T
|
||||
|
||||
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
|
||||
#columns=['model'], aggfunc="sum")
|
||||
#print(table,table.columns)
|
||||
|
||||
html="""
|
||||
<h1>Data general de los modelos</h1>
|
||||
<taipy:table>{data_voice}</taipy:table>
|
||||
<h1>Data de cada muestra</h1>
|
||||
<taipy:table filter=True>{data_files_voice}</taipy:table>
|
||||
"""
|
||||
|
||||
return html,data,datafiles
|
||||
html_page_getmetricsvoice,data_voice,data_files_voices=html_getmetricvoice()
|
||||
|
||||
mode="voice"
|
||||
modetypedata="audio"
|
||||
file="id2"
|
||||
def changemenu(mode):
|
||||
if mode_list[mode]=="audio":
|
||||
pathori="example/audio"
|
||||
if mode_list[mode]=="factura":
|
||||
pathori="example/factura"
|
||||
if mode_list[mode]=="texto":
|
||||
pathori="example/texto"
|
||||
seltypedata=mode_list[mode]
|
||||
dir_list = os.listdir(pathori)
|
||||
|
||||
return pathori,seltypedata,dir_list
|
||||
|
||||
"""
|
||||
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
|
||||
print(time.time()-t)
|
||||
return html,data,data_files
|
||||
|
||||
def getmetricllm_compra(model):
|
||||
rows = db(db.analitic_llm_compra.model==model).select()
|
||||
rows_list = rows.as_list()
|
||||
data=pd.DataFrame(rows_list)
|
||||
durationL=list()
|
||||
for i in rows_list:
|
||||
durationL.append(db(db.trusted.path == i["path"] ).select().last().duration)
|
||||
duration=statistics.mean(durationL)
|
||||
time=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['time'].values[0]
|
||||
similarity=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similarity'].values[0]
|
||||
similaritypartial=pd.pivot_table(data,values=['time','similarity', 'similaritypartial'],index="model")['similaritypartial'].values[0]
|
||||
efectivetime=time/duration
|
||||
return ({"model":model,"duration":duration,"time":time,"similarity":similarity,"similaritypartial":similaritypartial,"efectivetime":efectivetime})
|
||||
|
||||
def html_getmetricllm_compra():
|
||||
models=list()
|
||||
t=time.time()
|
||||
for row in db().select(db.analitic_llm_compra.model, distinct=True):
|
||||
models.append(row.model)
|
||||
data={}
|
||||
for model in models:
|
||||
data[model]=getmetricllm_compra(model)
|
||||
data=pd.DataFrame(data).T
|
||||
data_files={}
|
||||
for row in db().select(db.analitic_llm_compra.ALL):
|
||||
data_files[row.id]=row.as_dict()
|
||||
#print(datafiles)
|
||||
data_files=pd.DataFrame(data_files).T
|
||||
|
||||
#table = pd.pivot_table(data_files, values=['path', 'similarity','similaritypartial'], index=['path'],
|
||||
#columns=['model'], aggfunc="sum")
|
||||
#print(table,table.columns)
|
||||
|
||||
html="""
|
||||
<h1>Data general de los modelos</h1>
|
||||
<taipy:table>{data_voice}</taipy:table>
|
||||
<h1>Data de cada muestra</h1>
|
||||
<taipy:table filter=True>{data_files_voice}</taipy:table>
|
||||
|
||||
|
||||
"""
|
||||
#<taipy:chart mode="markers" x="x" y[1]="time" y[2]="similarity">{data_files_voice}</taipy:chart>
|
||||
print(time.time()-t)
|
||||
return html,data,data_files
|
||||
|
||||
|
||||
def trustedallhtml(mode):
|
||||
pathori,seltypedata,dir_list=changemenu(mode)
|
||||
def on_init(state):
|
||||
state.html_page_getmetricsvoice,state.data_voice,state.data_files_voice=html_getmetricvoice()
|
||||
pass
|
||||
|
||||
|
||||
|
||||
html_page_getmetricsvoice,data_voice,data_files_voice=html_getmetricvoice()
|
||||
# mode="voice"
|
||||
# modetypedata="audio"
|
||||
# file="id2"
|
||||
# def changemenu(mode):
|
||||
# if mode_list[mode]=="audio":
|
||||
# pathori="example/audio"
|
||||
# if mode_list[mode]=="factura":
|
||||
# pathori="example/factura"
|
||||
# if mode_list[mode]=="texto":
|
||||
# pathori="example/texto"
|
||||
# seltypedata=mode_list[mode]
|
||||
# dir_list = os.listdir(pathori)
|
||||
|
||||
# return pathori,seltypedata,dir_list
|
||||
|
||||
|
||||
textmode=""
|
||||
for modeused in mode_list.keys():
|
||||
textmode=textmode+"('%s','%s'),"%(modeused,modeused)
|
||||
html="""<taipy:selector lov="{[%s]}" dropdown True on_change=changemenu>{sel}</taipy:selector>"""%(textmode)
|
||||
Sal=""
|
||||
for i in dir_list:
|
||||
temp="""('%s', '%s'),"""%(str(pwd+"/"+pathori+"/"+i),str(i))
|
||||
Sal=Sal+temp
|
||||
html2="""<taipy:selector lov="{[%s]}" dropdown True >{sel2}</taipy:selector>"""%(Sal)
|
||||
return html+html2
|
||||
|
||||
html_page_trustedall = Html(trustedallhtml(mode))
|
||||
#print(sel,sel2,seltypedata)
|
||||
HTML = os.path.join(pwd,"html", "index.html")
|
||||
file_read = codecs.open(HTML, "r", "utf-8")
|
||||
index = file_read.read()
|
||||
html_page_index = Html(index)
|
||||
|
||||
data=pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
|
||||
|
||||
pages = {
|
||||
"/": html_page_index ,
|
||||
"getmetricsvoice": Html(html_page_getmetricsvoice),
|
||||
"trustedall":html_page_trustedall
|
||||
}
|
||||
|
||||
app = Gui(pages=pages)
|
||||
app.on_init=on_init
|
||||
if __name__=="__main__":
|
||||
app.run(use_reloader=True,port=7882, change_delay=1600)#state.imageActive2,
|
||||
app.run(use_reloader=True,port=7882)#state.imageActive2,
|
||||
|
|
47
main.py
47
main.py
|
@ -15,11 +15,8 @@ def EvalVoice2Text(endpoint,datajson,Trusted):
|
|||
"""
|
||||
apiUrl=urlAud+endpoint
|
||||
response = requests.get(apiUrl, json=datajson)
|
||||
print(datajson)
|
||||
A=json.loads(response.content)
|
||||
print(A)
|
||||
time=A['time']
|
||||
|
||||
similarity=fuzz.ratio( Trusted.strip().lower(),A['message'].strip().lower())
|
||||
similarityPartial=fuzz.partial_ratio( Trusted.strip().lower(),A['message'].strip().lower())
|
||||
path=datajson["local"]
|
||||
|
@ -34,27 +31,59 @@ def EvalVoice2Text(endpoint,datajson,Trusted):
|
|||
"path":path
|
||||
}
|
||||
|
||||
|
||||
def EvalWhisper(path,Trusted=""):
|
||||
endpoint="/voice2txt"
|
||||
datajson={"url":"","password":password ,"model":"whisper","local":path}
|
||||
return EvalVoice2Text(endpoint,datajson,Trusted)
|
||||
|
||||
|
||||
# EvalWhisper(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
|
||||
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
|
||||
# endpoint="/voice2txt")
|
||||
|
||||
def EvalVosk(path,Trusted=""):
|
||||
endpoint="/voice2txtlocal"
|
||||
datajson={"url":"","password":password ,"model":"models/vosk-model-small-es-0.42","local":path}
|
||||
return EvalVoice2Text(endpoint,datajson,Trusted)
|
||||
|
||||
|
||||
def EvalLLMCompra(endpoint,datajson,Trusted):
|
||||
"""Evaluate Voice 2 text
|
||||
"""
|
||||
apiUrl=urlText+endpoint
|
||||
response = requests.get(apiUrl, json=datajson)
|
||||
A=json.loads(response.content)
|
||||
time=A['time']
|
||||
print(A)
|
||||
similarity=fuzz.ratio( Trusted.strip().lower(),A['content'].strip().lower())
|
||||
similarityPartial=fuzz.partial_ratio( Trusted.strip().lower(),A['content'].strip().lower())
|
||||
#path=datajson["local"]
|
||||
model=datajson["model"]
|
||||
|
||||
message=A['content']
|
||||
return {"content":message,
|
||||
"trusted":Trusted,
|
||||
"model":model,
|
||||
"time":time,
|
||||
"similarity":similarity,
|
||||
"similaritypartial":similarityPartial,
|
||||
"path":message
|
||||
}
|
||||
|
||||
def EvalModelLLMCompra(system,content,model,max_new_tokens,Trusted):
|
||||
endpoint="/genTextCustom"
|
||||
datajson={"system":system,"content":content,"password":password ,"model":model,"max_new_token":max_new_tokens}
|
||||
return EvalLLMCompra(endpoint,datajson,Trusted)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# EvalVosk(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
|
||||
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
|
||||
# endpoint="/voice2txtlocal")
|
||||
# EvalWhisper(path="example/AwACAgEAAxkBAAIBw2YX8o2vGGCNtZCXk7mY1Bm5w__lAAJmBAACxe7ARI1fUWAGcz_RNAQ.ogg",
|
||||
# Trusted="Hoy compre dos medicinas Tereleji en Cruz Verde por un monto de 494 mil 400 pesos colombianos.",
|
||||
# endpoint="/voice2txt")
|
||||
|
||||
|
||||
def ocrfacturas(path,task_prompt):
|
||||
|
|
Loading…
Reference in New Issue